scholarly journals On the Origin of the Magnetic Concentration Gradient Force and Its Interaction Mechanisms with Mass Transfer in Paramagnetic Electrolytes

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 114
Author(s):  
Magne Waskaas

The objective of this work is to analyze the origin of the magnetic concentration gradient force. The force will be studied in a diffusion system where a paramagnetic electrolyte diffuses through a thin, inert membrane under the influence of a homogeneous magnetic field. The force will be analyzed using the theory of magnetic circuits, i.e., by the concept of minimum reluctance principles. In addition, based on some previous studies, it will be discussed whether the minimum reluctance principle can be applied to mass transfer into and out of the diffusion layer at electrode/electrolyte interfaces. The results show that the magnetic concentration gradient force arises as a consequence of the minimum reluctance principle. Applied to the diffusion system, the magnetic concentration gradient force arises in the membrane as a consequence of the concentration gradient and hence, the reluctance gradient. The force acts on the flow in such a way that the reluctance in the membrane is minimized. The force implies two interaction mechanisms: attraction of the paramagnetic electrolyte flowing into the membrane in order to decrease the reluctance, and hindrance of the paramagnetic electrolyte flowing out of the membrane in order to hinder an increase in the reluctance. Based on previous studies, it is shown that the minimum reluctance principle can be applied to mass transfer into or out of the diffusion layer at electrode/electrolyte interfaces as well.

Author(s):  
Francisco J. Arias ◽  
Salvador A. De Las Heras

Abstract In this work, consideration is given to capillary convection on ferrofluids from the concentration gradient induced when a nonhomogeneous magnetic field is applied. It is known that mass transfer along an interface between two fluids can appear due to a gradient of the surface tension in the so-called Marangoni effect (or Gibbs–Marangoni effect). Because the surface tension is both thermal and concentration dependent, Marangoni convection can be induced by either a thermal or a concentration gradient, where in the former case, it is generally referred as thermocapillary convection. Now, it has been theoretically and experimentally demonstrated that a ferrofluid under the action of a non-homogeneous magnetic field can induce a concentration gradient of suspended magnetic nanoparticles, and also the effect of Fe3O4 nanoparticles on the surface tension has been measured. Therefore, by deductive reasoning and taking into account the above mentioned facts, it is permissible to infer ferrohydrodynamic capillary convection on magnetic fluids under the presence of a magnetic gradient field. Utilizing a simplified physical model, the phenomenon was investigated and it was found that ferrohydrodynamic-Marangoni convection could be induced with particle size in the range up to 10 nm, which is the range of magnetic fluids to escape magnetic agglomeration.


2007 ◽  
Vol 9 (10) ◽  
pp. 2479-2483 ◽  
Author(s):  
Tom Weier ◽  
Kerstin Eckert ◽  
Sascha Mühlenhoff ◽  
Christian Cierpka ◽  
Andreas Bund ◽  
...  

2021 ◽  
Vol 407 ◽  
pp. 173-184
Author(s):  
Abul Khair ◽  
Nilay Kumar Dey ◽  
Mohammad Harun-Ur-Rashid ◽  
Mohammad Abdul Alim ◽  
Newas Mohammad Bahadur ◽  
...  

Absolute diffusion rates of KMnO4 in vertical and flattened diffusimeters show the concentration gradient force as being stronger than the gravitational force. Hot water molecules move downward on self-diffusion against buoyancy. Diffusive convection (DC) in warm water and double-diffusive convection (DDC) in warm, saline water take place inside the diffusimeter with DDC transferring more heat than DC. In the diffusing medium the original reagents change or retain their compositions to give the diffusate molecules to diffuse. In water, the change is mostly hydration. The syngener BaCl2.2H2O separately with congeners 3CdSO4.8H2O, ZnSO4.7H2O, and ZnSO4.H2O presents two distinct pairs of overlapping concentration versus rate curves, first for having very close MWs of BaCl2 and CdSO4 and second for having ZnSO4.H2O as the common congener for both the zinc sulfates. Chlorides of Li, Na, and K diffusing at hindered rates in glucose solution show the least rate for LiCl inevitably on grounds of low mass and high Li+ hydration radius. Diffusion blocking occurs at higher glucose concentration. Diffusion of 0.6M AgNO3-0.6M NH4Cl standardizes this diffusimeter. Mass transfer of HCl, H2SO4, and H2C2O4 show oxalic acid diffusing as hydrate and 88 percentage transfer of sulfuric acid in 5 minutes. The Superdiffusive Anti Graham’s Law, Vd , is further consolidated by Ca (NO3)2-M2CO3(M = Na, K, NH4+) and Ca (NO3)2-Na2HPO4 diffusions. Odd and even diffusions are illustrated by AgNO3-NH4Cl and AgNO3-BaCl2 diffusions.


2007 ◽  
Vol 11 (6) ◽  
pp. 711-717 ◽  
Author(s):  
J. M. D. Coey ◽  
F. M. F. Rhen ◽  
P. Dunne ◽  
S. McMurry

2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2018 ◽  
Vol 1 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Alexey Chernogor ◽  
Igor Blinkov ◽  
Alexey Volkhonskiy

The flow, energy distribution and concentrations profiles of Ti ions in cathodic arc are studied by test particle Monte Carlo simulations with considering the mass transfer through the macro-particles filters with inhomogeneous magnetic field. The loss of ions due to their deposition on filter walls was calculated as a function of electric current and number of turns in the coil. The magnetic field concentrator that arises in the bending region of the filters leads to increase the loss of the ions component of cathodic arc. The ions loss up to 80 % of their energy resulted by the paired elastic collisions which correspond to the experimental results. The ion fluxes arriving at the surface of the substrates during planetary rotating of them opposite the evaporators mounted to each other at an angle of 120° characterized by the wide range of mutual overlapping.


1986 ◽  
Vol 41 (3) ◽  
pp. 355-358 ◽  
Author(s):  
V. S. Ghole ◽  
P. S. Damle ◽  
W. H.-P. Thiemann

A homogeneous magnetic field of 1.1 T strength exhibits a significant influence on the activity of the enzyme ascorbic acid oxidase in vitro. A Lineweaver-Burk plot of the reaction shows the typical pattern of a mixed-type inhibition, i.e. a larger rate of reaction at low substrate concentrations and a smaller rate of reaction at high substrate concentration than that of the control without magnetic field applied.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document