scholarly journals A Model for Stokes Flow in Domains with Permeable Boundaries

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 381
Author(s):  
Ricardo Cortez ◽  
Marian Hernandez-Viera ◽  
Owen Richfield

We derive a new computational model for the simulation of viscous incompressible flows bounded by a thin, flexible, porous membrane. Our approach is grid-free and models the boundary forces with regularized Stokeslets. The flow across the porous membranes is modeled with regularized source doublets based on the notion that the flux velocity across the boundary can be viewed as the flow induced by a fluid source/sink pair with the sink on the high-pressure side of the boundary and magnitude proportional to the pressure difference across the membrane. Several validation examples are presented that illustrate how to calibrate the parameters in the model. We present an example consisting of flow in a closed domain that loses volume due to the fluid flux across the permeable boundary. We also present applications of the method to flow inside a channel of fixed geometry where sections of the boundary are permeable. The final example is a biological application of flow in a capillary with porous walls and a protein concentration advected and diffused in the fluid. In this case, the protein concentration modifies the pressure in the flow, producing dynamic changes to the flux across the walls. For this example, the proposed method is combined with finite differences for the concentration field.

2021 ◽  
pp. 152808372110142
Author(s):  
Ariana Khakpour ◽  
Michael Gibbons ◽  
Sanjeev Chandra

Porous membranes find natural application in various fields and industries. Water condensation on membranes can block pores, reduce vapour transmissibility, and diminish the porous membranes' performance. This research investigates the rate of water vapour transmission through microporous nylon and nanofibrous Gore-Tex membranes. Testing consisted of placing the membrane at the intersection of two chambers with varied initial humidity conditions. One compartment is initially set to a high ([Formula: see text]water vapour concentration and the other low ([Formula: see text], with changes in humidity recorded as a function of time. The impact of pore blockage was explored by pre-wetting the membranes with water or interposing glycerine onto the membrane pores before testing. Pore blockage was measured using image analysis for the nylon membrane. The mass flow rate of water vapour ( ṁv) diffusing through a porous membrane is proportional to both its area (A) and the difference in vapour concentration across its two faces ([Formula: see text], such that [Formula: see text] where K is defined as the moisture diffusion coefficient. Correlations are presented for the variation of K as a function of [Formula: see text]. Liquid contamination on the porous membrane has been shown to reduce the moisture diffusion rate through the membrane due to pore blockage and the subsequent reduced open area available for vapour diffusion. Water evaporation from the membrane's surface was observed to add to the mass of vapour diffusing through the membrane. A model was developed to predict the effect of membrane wetting on vapour diffusion and showed good agreement with experimental data.


2013 ◽  
Vol 45 (3) ◽  
pp. 1871-1885 ◽  
Author(s):  
C. Bardos ◽  
M. C. Lopes Filho ◽  
Dongjuan Niu ◽  
H. J. Nussenzveig Lopes ◽  
E. S. Titi

Author(s):  
Yasser Aboelkassem ◽  
Anne E. Staples ◽  
John J. Socha

Inspired by the physiological network of insects, which have dimensions on the order of micrometers to millimeters, we study the airflow within a single model insect tracheal tube. The tube undergoes localized rhythmic wall contractions. A theoretical analysis is given to model the airflow within the tracheal tube. Since flow motions at the microscale are dominated mainly by viscous effects, and the tube has radius, R, that is much smaller than its length, L, (i.e. δ = R/L ≪ 1), lubrication theory for axisymmetric, viscous, incompressible flows at low Reynolds number (Re ∼ δ) is used to model the problem mathematically. Expressions for the velocity field, pressure gradient, wall shear stress and net flow produced by the driving tube wall contractions are derived. The effect of the contraction amplitudes, time lag, and spacing between two sequences of contractions on the time-averaged net flow over a single cycle of wall motions is investigated. The study presents a new, insect-inspired mechanism for valveless pumping that can guide efforts to fabricate novel microfluidic devices that mimic these physiological systems. A x-ray image that shows the tracheal network of the respiratory system of an insect (Carabid beetle) and the associated locations of these rhythmic contractions are shown in figure (1) to promote this study.


Sign in / Sign up

Export Citation Format

Share Document