scholarly journals The Potential Role of Probiotics in Protection against Influenza a Virus Infection in Mice

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 902
Author(s):  
Wenwei Lu ◽  
Zhifeng Fang ◽  
Xinyang Liu ◽  
Lingzhi Li ◽  
Pinghu Zhang ◽  
...  

Influenza A virus induces severe respiratory tract infection and results in a serious global health problem. Influenza infection disturbs the cross-talk connection between lung and gut. Probiotic treatment can inhibit influenza virus infection; however, the mechanism remains to be explored. The mice received Lactobacillus mucosae 1025, Bifidobacterium breve CCFM1026, and their mixture MIX for 19 days. Effects of probiotics on clinical symptoms, immune responses, and gut microbial alteration were evaluated. L. mucosae 1025 and MIX significantly reduced the loss of body weight, pathological symptoms, and viral loading. B. breve CCFM1026 significantly reduced the proportion of neutrophils and increased lymphocytes, the expressions of TLR7, MyD88, TRAF6, and TNF-α to restore the immune disorders. MIX increased the antiviral protein MxA expression, the relative abundances of Lactobacillus, Mucispirillum, Adlercreutzia, Bifidobacterium, and further regulated SCFA metabolism resulting in an enhancement of butyrate. The correlation analysis revealed that the butyrate was positively related to MxA expression (p < 0.001) but was negatively related to viral loading (p < 0.05). The results implied the possible antiviral mechanisms that MIX decreased viral loading and increased the antiviral protein MxA expression, which was closely associated with the increased butyrate production resulting from gut microbial alteration.

2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection.Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection. Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Background Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), lymphocytes multiplied by platelets (LYM*PLT) and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children. Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 h of the onset of fever for influenza virus infection. Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the > 6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the > 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924. Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly in children older than 6 years with influenza A virus infection.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Background Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), lymphocytes multiplied by platelets (LYM*PLT) and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection. Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 167 ◽  
Author(s):  
Mark Y. Sangster ◽  
Phuong Q. T. Nguyen ◽  
David J. Topham

When influenza A virus infects an immune individual, preexisting memory B cell (MBC) activation and rapid anamnestic antibody production plays a key role in viral clearance. The most effective neutralizing antibodies target the antigenically variable head of the viral hemagglutinin (HA); antibodies against the conserved HA stalk provide broader but less potent protection. In this review, we provide a comprehensive picture of an adult’s HA-specific antibody response to influenza virus infection. The process is followed from preexisting HA-specific MBC activation and rapid production of anti-HA antibodies, through to germinal center seeding and adaptation of the response to novel features of the HA. A major focus of the review is the role of competition between preexisting MBCs in determining the character of the HA-reactive antibody response. HA novelty modifies this competition and can shift the response from the immunodominant head to the stalk. We suggest that antibodies resulting from preexisting MBC activation are important regulators of anti-HA antibody production and play a role in positive selection of germinal center B cells reactive to novel HA epitopes. Our review also considers the role of MBCs in the effects of early-life imprinting on HA head- and stalk-specific antibody responses to influenza infection. An understanding of the processes described in this review will guide development of vaccination strategies that provide broadly effective protection.


2019 ◽  
Vol 221 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Han Sol Lee ◽  
Ji Yun Noh ◽  
Ok Sarah Shin ◽  
Joon Young Song ◽  
Hee Jin Cheong ◽  
...  

Abstract Background Influenza virus infection triggers acute cardiovascular events. Several studies have demonstrated that influenza A virus infection was associated with immune cell influx and increased production of inflammatory cytokines in the atherosclerotic plaque lesion, but the underlying mechanism for these findings is not clear. Methods We examined the expression levels of matrix metalloproteinases (MMPs) by influenza A virus infection in human cells using quantitative real-time polymerase chain reaction, Western blot, and human MMP-13 enzyme-linked immunosorbent assay. In an animal study, protein expression in the plaque lesions of apolipoprotein E (ApoE)-deficient mice were analyzed by immunohistochemistry and Western blot. Results We confirmed that MMP-13 was increased in influenza A virus-infected cells. In the aorta of infected ApoE-deficient mice, MMP-13 was increased at 3 days after infection. Immunohistochemical staining results suggested that collagen was degraded in the MMP-13 expression area and that macrophages were the main source of MMP-13 expression. Furthermore, the expression of MMP-13 was regulated by influenza A virus through activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Conclusions In this study, we demonstrated that p38 MAPK-mediated MMP-13 expression by influenza A virus infection led to destabilization of vulnerable atherosclerotic plaques in the artery.


2008 ◽  
Vol 89 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Norio Ogata ◽  
Takashi Shibata

Influenza virus infection is one of the major causes of human morbidity and mortality. Between humans, this virus spreads mostly via aerosols excreted from the respiratory system. Current means of prevention of influenza virus infection are not entirely satisfactory because of their limited efficacy. Safe and effective preventive measures against pandemic influenza are greatly needed. We demonstrate that infection of mice induced by aerosols of influenza A virus was prevented by chlorine dioxide (ClO2) gas at an extremely low concentration (below the long-term permissible exposure level to humans, namely 0.1 p.p.m.). Mice in semi-closed cages were exposed to aerosols of influenza A virus (1 LD50) and ClO2 gas (0.03 p.p.m.) simultaneously for 15 min. Three days after exposure, pulmonary virus titre (TCID50) was 102.6±1.5 in five mice treated with ClO2, whilst it was 106.7±0.2 in five mice that had not been treated (P=0.003). Cumulative mortality after 16 days was 0/10 mice treated with ClO2 and 7/10 mice that had not been treated (P=0.002). In in vitro experiments, ClO2 denatured viral envelope proteins (haemagglutinin and neuraminidase) that are indispensable for infectivity of the virus, and abolished infectivity. Taken together, we conclude that ClO2 gas is effective at preventing aerosol-induced influenza virus infection in mice by denaturing viral envelope proteins at a concentration well below the permissible exposure level to humans. ClO2 gas could therefore be useful as a preventive means against influenza in places of human activity without necessitating evacuation.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Qiu Wang ◽  
Cuie Chen ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose We aimed to explore the value of Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases, for predicting influenza virus infection in children. Methods We conducted a single-center, retrospective, observational study on fever with influenza-like symptom in pediatric outpatients in different age groups and evaluated the predictive value of various routine blood parameters within 48 hours of the onset of fever after influenza virus infection. Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in the infected children. The LYM count, LMR and LYM*PLT in the infected group were lower in the 1- to 6-year-old group, and the LMR and LYM*PLT in the infected group were lower in the > 6-year-old group. In the 1- to 6-year-old group, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the AUC was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the > 6-year-old group, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924. Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for predicting influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, especially influenza A virus infection.


2019 ◽  
Vol 71 (5) ◽  
pp. 1195-1203 ◽  
Author(s):  
Tim K Tsang ◽  
Kyu Han Lee ◽  
Betsy Foxman ◽  
Angel Balmaseda ◽  
Lionel Gresh ◽  
...  

Abstract Background Previous studies suggest that the nose/throat microbiome may play an important role in shaping host immunity and modifying the risk of respiratory infection. Our aim is to quantify the association between the nose/throat microbiome and susceptibility to influenza virus infection. Methods In this household transmission study, index cases with confirmed influenza virus infection and their household contacts were followed for 9–12 days to identify secondary influenza infections. Respiratory swabs were collected at enrollment to identify and quantify bacterial species via high-performance sequencing. Data were analyzed by an individual hazard-based transmission model that was adjusted for age, vaccination, and household size. Results We recruited 115 index cases with influenza A(H3N2) or B infection and 436 household contacts. We estimated that a 10-fold increase in the abundance in Streptococcus spp. and Prevotella salivae was associated with 48% (95% credible interval [CrI], 9–69%) and 25% (95% CrI, 0.5–42%) lower susceptibility to influenza A(H3N2) infection, respectively. In contrast, for influenza B infection, a 10-fold increase in the abundance in Streptococcus vestibularis and Prevotella spp. was associated with 63% (95% CrI, 17–83%) lower and 83% (95% CrI, 15–210%) higher susceptibility, respectively. Conclusions Susceptibility to influenza infection is associated with the nose/throat microbiome at the time of exposure. The effects of oligotypes on susceptibility differ between influenza A(H3N2) and B viruses. Our results suggest that microbiome may be a useful predictor of susceptibility, with the implication that microbiome could be modulated to reduce influenza infection risk, should these associations be causal.


2016 ◽  
Vol 90 (7) ◽  
pp. 3661-3675 ◽  
Author(s):  
Sathya N. Thulasi Raman ◽  
Guanqun Liu ◽  
Hyun Mi Pyo ◽  
Ya Cheng Cui ◽  
Fang Xu ◽  
...  

ABSTRACTDDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein affecting the life cycle of a variety of viruses. However, its role in influenza virus infection is unknown. In this study, we explored the potential role of DDX3 in influenza virus life cycle and discovered that DDX3 is an antiviral protein. Since many host proteins affect virus life cycle by interacting with certain components of the viral machinery, we first verified whether DDX3 has any viral interaction partners. Immunoprecipitation studies revealed NS1 and NP as direct interaction partners of DDX3. Stress granules (SGs) are known to be antiviral and do form in influenza virus-infected cells expressing defective NS1 protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. We thus explored whether DDX3 plays a role in influenza virus infection through regulation of SGs. Our results showed that SGs were formed in infected cells upon infection with a mutant influenza virus lacking functional NS1 (del NS1) protein, and DDX3 colocalized with NP in SGs. We further determined that the DDX3 helicase domain did not interact with NS1 and NP; however, it was essential for DDX3 localization in virus-induced SGs. Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. Taken together, our results identified DDX3 as an antiviral protein with a role in virus-induced SG formation.IMPORTANCEDDX3 is a multifunctional RNA helicase and has been reported to be involved in regulating various virus life cycles. However, its function during influenza A virus infection remains unknown. In this study, we demonstrated that DDX3 is capable of interacting with influenza virus NS1 and NP proteins; DDX3 and NP colocalize in the del NS1 virus-induced SGs. Furthermore, knockdown of DDX3 impaired SG formation and led to a decreased virus titer. Thus, we provided evidence that DDX3 is an antiviral protein during influenza virus infection and its antiviral activity is through regulation of SG formation. Our findings provide knowledge about the function of DDX3 in the influenza virus life cycle and information for future work on manipulating the SG pathway and its components to fight influenza virus infection.


Sign in / Sign up

Export Citation Format

Share Document