scholarly journals Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol-Exposed Mice

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1232
Author(s):  
Bangyan Li ◽  
Qianqian Mao ◽  
Dandan Zhou ◽  
Min Luo ◽  
Renyou Gan ◽  
...  

Gut microbiota dysbiosis has been a crucial contributor to the pathogenesis of alcoholic fatty liver disease (AFLD). Tea is a popular beverage worldwide and exerts antioxidant and anti-inflammatory activities, as well as hepatoprotective effects. However, the potential role of gut microbiota regulated by tea in the prevention and management of AFLD remains unclear. Here, the protective effects of oolong tea, black tea, and dark tea on AFLD and its regulation of gut microbiota in chronic alcohol-exposed mice were explored and investigated. The results revealed that tea supplementation significantly prevented liver steatosis, decreased oxidative stress and inflammation, and modulated gut microbiota in chronic alcohol-exposed mice, especially oolong tea and dark tea. However, black tea showed less effectiveness against liver injury caused by alcohol. Moreover, the diversity, structure and composition of chronic alcohol-disrupted gut microbiota were restored by the supplementation of oolong tea and dark tea based on the analysis of gut microbiota. Furthermore, the relationship between liver injury biochemical indicators and gut microbiota indicated that some specific bacteria, such as Bacteroides, Alloprevotella, and Parabacteroides were closely associated with AFLD. In addition, the phytochemical components in tea extracts were measured by high-performance liquid chromatography, which could contribute to preventive effects on AFLD. In summary, oolong tea and dark tea could prevent chronic alcohol exposure-induced AFLD by modulating gut microbiota.

Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1298 ◽  
Author(s):  
Huilin Liu ◽  
Meihong Liu ◽  
Xueqi Fu ◽  
Ziqi Zhang ◽  
Lingyu Zhu ◽  
...  

The development and progression of alcoholic fatty liver disease (AFLD) is influenced by the intestinal microbiota. Astaxanthin, a type of oxygenated carotenoid with strong antioxidant and anti-inflammatory properties, has been proven to relieve liver injury. However, the relationship between the gut microbiota regulation effect of astaxanthin and AFLD improvement remains unclear. The effects of astaxanthin on the AFLD phenotype, overall structure, and composition of gut microbiota were assessed in ethanol-fed C57BL/6J mice. The results showed that astaxanthin treatment significantly relieves inflammation and decreases excessive lipid accumulation and serum markers of liver injury. Furthermore, astaxanthin was shown to significantly decrease species from the phyla Bacteroidetes and Proteobacteria and the genera Butyricimonas, Bilophila, and Parabacteroides, as well as increase species from Verrucomicrobia and Akkermansia compared with the Et (ethanol)group. Thirteen phylotypes related to inflammation as well as correlated with metabolic parameters were significantly altered by ethanol, and then notably reversed by astaxanthin. Additionally, astaxanthin altered 18 and 128 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways involved in lipid metabolism and xenobiotic biodegradation and metabolism at levels 2 and 3, respectively. These findings suggest that Aakkermansia may be a potential target for the astaxanthin-induced alleviation of AFLD and may be a potential treatment for bacterial disorders induced by AFLD.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1719
Author(s):  
Valentina Castillo ◽  
Fernanda Figueroa ◽  
Karoll González-Pizarro ◽  
Paz Jopia ◽  
Claudia Ibacache-Quiroga

Non-alcoholic fatty liver disease (NAFLD) is a chronic non-communicable disease, with a prevalence of 25% worldwide. This pathology is a multifactorial illness, and is associated with different risks factors, including hypertension, hyperglycemia, dyslipidemia, and obesity. Beside these predisposing features, NAFLD has been related to changes in the microbiota, which favor the disease progression. In this context, the modulation of the gut microbiota has emerged as a new therapeutic target for the prophylaxis and treatment of NAFLD. This review describes the changes in the gut microbiota associated with NAFLD and the effect of probiotics, prebiotics, and synbiotics on the gut microbiota, liver damage, anthropometric parameters, blood lipids, inflammation markers and insulin resistance in these patients.


Author(s):  
Ludovico Abenavoli ◽  
Anna C. Procopio ◽  
Emidio Scarpellini ◽  
Natale Polimeni ◽  
Isabella Aquila ◽  
...  

2020 ◽  
Author(s):  
Chyntia Olivia Maurine Jasirwan ◽  
Akhmadu Muradi ◽  
Irsan Hasan ◽  
Marcellus Simadibrata ◽  
Ikhwan Rinaldi ◽  
...  

Abstract Background : We investigated the gut microbiota in patients with non-alcoholic fatty liver disease (NAFLD) and its correlation with fibrosis and steatosis as reflected in the controlled attenuation parameter and transient elastography valuesMethods : A cross-sectional study was performed on 37 patients with NAFLD at Cipto Mangunkusumo National General Hospital from December 2018 to March 2019. The gut microbiota was investigated in fecal samples with 16S RNA sequencing using the next-generation sequencing platform MiSeq (Illumina).Results : NAFLD was more common in patients with metabolic syndrome. Firmicutes, Bacteroidetes, and Proteobacteria were the predominant phyla. Bacteroides was more dominant than Prevotella, contrary to the results in previous studies on normal populations in Indonesia. Microbiota dysbiosis was observed in most samples. The gastrointestinal microbiota diversity was significantly decreased in patients with NAFLD with high triglyceride levels and central obesity. The Firmicutes/Bacteroidetes ratio correlated with steatosis and obesity, whereas some other species in the lower taxonomy were mostly correlated with steatosis and obesity without fibrosis. Proteobacteria is the only phylum strongly correlated with fibrosis in patients with normal body mass index.Conclusions : The gut microbiota diversity was decreased in patients with NAFLD with high triglyceride levels and central obesity, and certain gut microbes were correlated with fibrosis and steatosis.


2009 ◽  
Vol 29 (9) ◽  
pp. 1431-1438 ◽  
Author(s):  
Maud Lemoine ◽  
Vlad Ratziu ◽  
Minji Kim ◽  
Mustapha Maachi ◽  
Dominique Wendum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document