ethanol group
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Johannes Müller ◽  
Walter Plöchl ◽  
Paul Mühlbacher ◽  
Alexandra Graf ◽  
Anne-Margarethe Kramer ◽  
...  

AbstractA high number of trauma patients are under the influence of alcohol. Since many of them need immediate surgical procedures, it is imperative to be aware of the interaction of alcohol with general anesthesia. To counter challenges that arise from clinical studies, we designed an animal experiment in which 48 adult Wistar rats either received 1 g · kg−1 ethanol, 2 g · kg−1 ethanol or placebo via intraperitoneal application. Subsequently, they were anesthetized with an individual concentration of sevoflurane. The minimum alveolar concentration (MAC) of the different groups was assessed using Dixon’s up-and-down design and isotonic regression methods. The bootstrap estimate of the MAC of sevoflurane in the placebo group was 2.24 vol% (95% CI 1.97–2.94 vol%). In the low dose ethanol group, the bootstrap estimate was 1.65 vol% (95% CI 1.40–1.98 vol%), and in the high dose ethanol group, it was 1.08 vol% (95% CI 0.73–1.42 vol%). We therefore report that intraperitoneal application of 1 g · kg−1 or 2 g · kg−1 ethanol both resulted in a significant reduction of the MAC of sevoflurane in adult Wistar rats: by 26.3% and 51.8% respectively as compared to placebo.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhiliang Chen ◽  
Tony C. H. Chow ◽  
Shicong Wang ◽  
Gigi C. T. Leung ◽  
Sharon L. Y. Wu ◽  
...  

Background. Alcoholism is known to cause liver toxicity and is extensively researched. On the other hand, stress, depression, and obesity are interrelated conditions with alcoholism, and their medications would affect the liver itself. In this study, we investigated the effects of the drugs fluoxetine and atorvastatin on the liver and compared with those of alcohol in a mouse model. Methods. Comparisons of animals treated with the three drugs were carried out: serum aspartate transaminase (AST), alanine transaminase (ALT), and albumin were measured; liver tumor necrosis factor alpha (TNF alpha) and transforming growth factor beta (TGF beta-1) levels were evaluated; proliferative cells were detected via immunohistochemistry (IHC) targeting on proliferating cell nuclear antigen (PCNA) and minichromosome maintenance complex component 2 (MCM2); for apoptosis, IHC targeting on activated caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) were employed; and histopathology was also documented in all groups. Results. For ALT, AST, albumin, and liver TNF alpha, only the ethanol group surged to significantly higher levels. For TGF beta-1, both ethanol and atorvastatin groups reached a significantly higher level. PCNA and MCM2 showed increased proliferation in the livers of all three groups, with the ethanol group having the highest number of positive cells followed by atorvastatin and then the fluoxetine group. As for cell death, both ethanol and fluoxetine groups showed significantly more apoptosis than control in TUNEL and activated caspase-3, while in the atorvastatin group, activated caspase-3 positive cells increased significantly, but the increase in TUNEL-positive cells did not reach statistical significance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kerly Niinep ◽  
Kaili Anier ◽  
Tony Eteläinen ◽  
Petteri Piepponen ◽  
Anti Kalda

Growing evidence suggests that epigenetic mechanisms, such as DNA methylation and demethylation, and histone modifications, are involved in the development of alcohol and drug addiction. However, studies of alcohol use disorder (AUD) that are focused on epigenetic DNA modifications and gene expression changes remain conflicting. Our aim was to study the effect of repeated ethanol consumption on epigenetic regulatory enzymes such as DNA methyltransferase and demethylase enzymes and whether those changes affected dynorphin/kappa-opioid receptor system in the Nucleus Accumbens (NAc). Two groups of male alcohol-preferring Alko Alcohol (AA) rats, rats which are selectively bred for high voluntary alcohol consumption and one group of male Wistar rats were used. The first group of AA rats had access to alcohol (10% ethanol solution) for 90 min on Mondays, Wednesdays and Fridays over a period of 3 weeks to establish a stable baseline of ethanol intake (AA-ethanol). The second group of AA rats (AA-water) and the Wistar rats (Wistar-water) were provided with water. Using qPCR, we found that voluntary alcohol drinking increased Dnmt1, −3a, and −3b mRNA levels and did not affect Tet family transcripts in the AA-ethanol group when compared with AA- and Wistar-water rats. DNMT and TET enzymatic activity measurements showed similar results to qPCR, where DNMT activity was increased in AA-ethanol group compared with AA-water and Wistar-water groups, with no statistically significant difference between groups in TET enzyme activity. In line with previous data, we found an increased percentage of global DNA methylation and hydroxymethylation in the AA-ethanol group compared with control rats. Finally, we investigated changes of selected candidate genes from dynorphin/kappa-opioid receptor system (Pdyn, Kor) and Dnmt3a genes that might be important in AUD-related behaviour. Our gene expression and promoter methylation analysis revealed a significant increase in the mRNA levels of Pdyn, Kor, and Dnmt3a in the AA-ethanol group, however, these changes can only be partially associate with the aberrant DNA methylation in promoter areas of the selected candidate genes. Thus, our findings suggest that the aberrant DNA methylation is rather one of the several mechanisms involved in gene expression regulation in AA rat model.


2021 ◽  
Vol 4 (3) ◽  
pp. 55-66
Author(s):  
Oluwatoyin Adenike Adeyemo-Salami ◽  
Opeyemi Jamiu Afonja ◽  
Olamuyiwa Faosiyat Adeleke ◽  
Adeola Oluwatosin Adedara ◽  
Amos Olalekan Abolaji

Chlorogenic acid (CA), abundantly found in green coffee beans, is a phenolic compound with antioxidant and anti-inflammatory properties amongst others. Exposure to rotenone, a natural pesticide, induces Parkinsonism (a type of neurodegeneration) through the induction of mitochondria dysfunction and oxidative stress. Phytochemicals with antioxidant properties may be promising in attenuating this condition. In this research, the ameliorative role of CA on rotenone-induced toxicity in Drosophila melanogaster was evaluated. Drosophila melanogaster (Harwich strain, 1- 3 days old) was used. 6 groups of five vials each with 50 flies/vial were exposed to CA (0; control (2% ethanol), 7.5, 15, 30, 45 and 60 mg/kg diet) for 28 days in the longevity analysis. A 28-day survival assay was carried out with rotenone (0, 250 and 500 μM). CA (30 mg/kg diet) was selected to evaluate its ameliorative potential on rotenone. For the study, the flies were divided into four groups of five vials each and exposed to CA and rotenone; Group A- control (2% ethanol), Group B- CA only, Group C- rotenone only and Group D- CA (30 mg/kg diet)+ rotenone (500 μM)for 7 days. Thereafter, the homogenate was evaluated for oxidative stress status, rate of emergence, negative geotaxis and acetyl cholinesterase activity. CA (30 mg/kg diet) extended the lifespan of flies by 21.4%. Also, CA ameliorated rotenone-induced perturbation in catalase, glutathione-S-transferase and acetyl cholinesterase activities, total thiol and glutathione levels, and behavioral deficit (p < 0.05). CA may have ameliorative effect against rotenone-induced toxicity and Parkinsonism.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Anastasiya S. Babkina ◽  
Maryam B. Khadzhiyeva ◽  
Irina V. Ostrova ◽  
Ivan A. Ryzhkov ◽  
Arkady M. Golubev

Background — Acute poisoning with atypical neuroleptic clozapine is characterized by rapid progression, high risk of death and severe neurological manifestations. Neurotoxic effects of this pharmaceutical drug have also been reported at therapeutic doses. The pathogenesis of brain damage in acute clozapine poisoning is not fully understood. Changes in DNA methylation level may play an important role in the mechanisms of drug neurotoxicity. The available data on the effect of clozapine on brain cell DNA provide a rationale for studying the epigenetic aspects of the pathogenesis of acute poisoning with this neuroleptic agent. The objective of our study was to evaluate the global DNA methylation level in rat brain neurons in acute poisoning with clozapine and its combination with ethanol. Material and methods — Clozapine – 150 mg/kg in 2.0 ml of normal saline solution, or clozapine – 150 mg/kg in 2.0 ml of 40% ethanol were administered via a gastric tube to adult male Wistar rats (n=21) under anesthesia with sevoflurane. In the control group, saline was administered via a gastric tube. Animals were euthanized four hours after drug administration. Autopsy was performed with the collection of brain samples for histochemical examination and determination of the DNA methylation level using the fluorometric method. To detect DNA in sections of paraffin-embedded tissue, we used the Feulgen staining. The TUNEL method was employed to detect DNA fragmentation. Results — An increase in the level of global DNA methylation in brain neurons was found in the clozapine and clozapine+ethanol groups. The average level of methylated DNA in the clozapine+ethanol group was higher than in the control group or clozapine group (2.56±0.31 vs. 1.35±0.1, p=0.007 and 1.70±0.33, p=0.044, respectively). An increase in the mean optical density of the cortical neuron nuclei was observed in the clozapine+ethanol group compared with the control group and clozapine group. DNA fragmentation was not detected in any experimental group. Conclusion — Acute poisoning with clozapine in combination with alcohol caused an increase in the global DNA methylation level in brain neurons, which may have played a significant role in the pathogenesis of acute clozapine poisoning and could be an important factor in the neurotoxicity of this medication.


2021 ◽  
Vol 5 (5) ◽  
pp. 85-88
Author(s):  
Yuanyuan Jia ◽  
Chang Tian ◽  
Siqi Wang ◽  
Yu Feng ◽  
Wujun Li ◽  
...  

Objective: To study the effect of sal ammoniac extract on the treatment of liver cancer and analyze its possibility of replacing absolute ethanol. Methods: Sixty Kunming mice (5-6 weeks old, 18-22g in weight, male and female in half) were selected and inoculated with 0.1 ml of 1:4 ascitic diluent from mouse liver cancer H22 under the axilla of the right limb. After tumor formation, they were randomly divided into 3 groups with 20 mice in each group. Normal saline (NS), sal ammoniac extract (N), and absolute ethanol (E) were injected into the tumor once a day for four times. The death, tumor weight, tumor inhibition rate, lactate dehydrogenase (LDH), and succinate dehydrogenase (SDH) expression of the mice in each group were analyzed. Results: In the course of treatment, 3 mice died in the normal saline group, 2 mice died in the sal ammoniac treatment group, and 7 mice died in the absolute ethanol group. The tumor weight of the normal saline group, sal ammoniac treatment group, and absolute ethanol group were 1.88 ± 0.26, 1.41 ± 0.49, and 1.51 ± 0.46, respectively. The tumor inhibition rates were 0%, 31.0%, and 21.6%, respectively. Comparing the sal ammoniac treatment group and the normal saline group, t = 3.5133, p = 0.0013; comparing the absolute ethanol group and the normal saline group, t = 2.7926, p = 0.0093. The expression of LDH was 81 ± 10, 51 ± 11, and 32 ± 9 in the normal saline group, sal ammoniac treatment group, and absolute ethanol group, respectively, while the expression of SDH was 80 ± 10, 51 ± 10, and 51 ± 12 in the normal saline group, sal ammoniac treatment group, and absolute ethanol group, respectively. Comparing the LDH of the sal ammoniac treatment group with that of the saline group, t = 8.4264, p = 0.0000; comparing the absolute ethanol group and normal saline group, t = 13.8763, p = 0.0000. Comparing the SDH of the sal ammoniac treatment group with that of the normal saline group, t = 8.1455, p = 0.0000; comparing the absolute ethanol group with the normal saline group, t = 7.2197, p = 0.0000. Conclusion: The traditional Chinese antitumor medicine, sal ammoniac and its main effective components have good antitumor effect, which can be further popularized and applied in clinical practice.


2021 ◽  
pp. 096032712110459
Author(s):  
Kênia Mara M C Cardoso ◽  
Lorenna A Gomes ◽  
Amanda Maria S Reis ◽  
Carla Maria O Silva ◽  
Natalia V Tamiasso ◽  
...  

Thirteen female Wistar rats were divided into two groups: one treated with ethanol and the other of untreated. Four newborns from each mother were selected and weighed, measured, and evaluated for physical characteristics. From these neonates, chondrocytes were extracted from the articular cartilages of the femur and tibia, and cultivated in a chondrogenic medium at 37oC and 5% CO2. At 7, 14, and 21 days of cultivation, alkaline phosphatase activity tests, MTT conversion to formazan, and percentage area covered by cells per field were performed. At 21 days, the percentage of PAS+ areas in 3D cultures was performed, as well as the evaluation of gene transcript expression for aggrecan, SOX-9, collagen type II, collagen X, Runx-2, and VEGF by real-time RT-PCR. The means were compared by Student’s t-test. The weight of the ethanol group neonates was significantly lower than that of the controls. Chondrocyte cultures from the ethanol group showed significantly higher AP activity, MTT conversion, and cell percentage. There was higher expression of collagen type II and lower expression of SOX-9 in the ethanol group. There was no difference in the percentage of PAS+ areas in pellets and in expression of aggrecan, collagen X, Runx-2, or VEGF between groups. In conclusion, prenatal exposure to ethanol alters the phenotype and activity of offspring chondrocytes, which may be mechanisms by which endochondral bone formation is compromised by maternal ethanol consumption.


2021 ◽  
Vol 11 (9) ◽  
pp. 1249
Author(s):  
Mohd. Ashik Shahrier ◽  
Hiromi Wada

Recording ultrasonic vocalizations (USVs) is a highly sensitive tool to study the dam–pup social relationships, and USV recordings have been used to study the effects of ethanol on pups. Gestational effects of ethanol on the emission of USVs in rat pups have been studied in our previous research. In the present study, the effects of ethanol given to dams during lactation on the acoustic parameters of USVs emitted by isolated pups were examined. Ethanol was administered to dams from postnatal days (PNDs) 5–21. From PNDs 11–21, the high- and low-ethanol-treated dams were exposed to ethanol-containing water (v/v) at concentrations of 30% and 15%, respectively. Tap water without ethanol (0%) was provided to the control dams. The pups in all three ethanol-treated groups were separated from the dam and littermates on PNDs 4, 8, 12, and 16, and USVs produced by the pups were recorded for 5 min. It was found that elevated distress USVs with longer duration and higher percentage of frequency modulations were displayed by the pups from the high-ethanol dams. Alterations in USVs were particularly evident in the pups with a reduced body weight at PND 12. This effect might be because high-ethanol dams showed significantly lower intake of higher ethanol-containing water, and consequently, produced lower amount of milk, as well as exhibited poor maternal care. Insufficient maternal care and malnutrition resulted in pup growth retardation and increased mortality rate in the high-ethanol group, which were not observed in the low-ethanol or control pups. Accordingly, the pups in the high-ethanol group experienced elevated negative emotionality during isolation from their dam and increased emission of USVs. Longer duration and increased frequency modulation of pup USVs are expected to be noticed by the dam and to initiate/increase proper maternal care. It is concluded that ethanol given to lactating mothers has more serious consequences on pup development than the gestational ethanol exposure, and has more harmful effects on pups.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2078
Author(s):  
Jiani Hu ◽  
Rui Liu ◽  
Xiaochen Yu ◽  
Zhen Li ◽  
Xinran Liu ◽  
...  

Peptic ulcer has a serious impact on people’s health around the world, and traditional medicines can cause adverse reactions. This study investigated the protective effects of tilapia collagen oligopeptides (TCOPs) on gastroduodenal injury. Seventy-two specific pathogen-free (SPF) male Sprague Dawley (SD) rats were randomly divided into six groups according to body weight: normal control group, ethanol group, whey protein group (500 mg/kg BW), and three TCOPs dose groups (250, 500, 1000 mg/kg BW). After intragastric administration for 30 days, the acute gastroduodenal injury was induced by anhydrous ethanol (5 mL/kg, intragastrically) in all groups except the normal control group. Biomarkers in gastric and duodenal tissue and serum were measured. Furthermore, western blot was used to detect the expression of apoptosis-related proteins. The results showed that the administration with TCOPs significantly reduced gastric and duodenal ulcer index, increased gastric juice pH, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, along with the reduction of malondialdehyde (MDA) contents. TCOPs decreased tumor Necrosis Factor-α (TNF-α), interleukin-1β (IL-1β), and myeloperoxidase (MPO) levels, while interleukin– 10 (IL-10) levels were increased. Furthermore, pepsinogens 1 (PG1), pepsinogens 2 (PG2), gastrin (GAS), and the pepsinogen ratio (PGR) were decreased, the prostaglandin E2 (PGE2) and NO contents were increased after TCOPs intervention. Moreover, TCOPs up-regulated the expression of Bcl-2 and inhibited the expression of Bax and Caspase-3. In conclusion, TCOPs have protective effects on ethanol-induced gastroduodenal injury through gastrointestinal mucosal microcirculation promotion, antioxidation, anti-inflammation, and anti-apoptosis mechanisms.


2020 ◽  
Vol 13 (4) ◽  
pp. 1619-1624
Author(s):  
Samuel Sundar Doss ◽  
J. Vijayakumar ◽  
E. Sukumar ◽  
K. Rekha

The study is aimed at assessing the effect of Prunus dulcis and alpha-tocopherol treatment against ethanol induced dyslipidemia in Wistar rats. 30 albino Wistar rats were selected based on the selection criteria and equally distributed into 5 groups – Control, ethanol, Prunus dulcis, alpha-tocopherol and combination of alpha-tocopherol + Prunus dulcis treated for 40 days. After the treatment for 40 days, all the animals were euthanized and a retro-orbital puncture was made to collect the blood samples for biochemical investigations. Obtained results were statistically analysed using ANOVA. Compared to ethanol group alpha tocopherol, Prunus dulcis and alpha tocopherol + Prunus dulcis treatment significantly decreased total cholesterol and triglycerides levels with p value <0.001. High density lipoprotein (66.31%) levels in the ethanol group were decreased compared to the control group and were significantly increased in other groups. Low density lipoprotein and Very low density lipoprotein levels were higher in the ethanol group compared with the control group and were significantly reduced in other groups with p value <0.001. Results suggest that ethanol has an ill effect on the lipid profile. Treatment with Prunus dulcius and alpha-tocopherol both solely or in combination has produced beneficial effects against dyslipidemia.


Sign in / Sign up

Export Citation Format

Share Document