scholarly journals ARIMA Time Series Models for Full Truckload Transportation Prices

Forecasting ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 121-134 ◽  
Author(s):  
Jason W. Miller

The trucking sector in the United States is a $700 billion plus a year industry and represents a large percentage of many firms’ logistics spend. Consequently, there is interest in accurately forecasting prices for truck transportation. This manuscript utilizes the autoregressive integrated moving average (ARIMA) methodology to develop forecasts for three time series of monthly archival trucking prices obtained from two public sources—the Bureau of Labor Statistics (BLS) and Truckstop.com. BLS data cover January 2005 through August 2018; Truckstop.com data cover January 2015 through August 2018. Different ARIMA models closely approximate the observed data, with coefficients of variation of the root mean-square deviations being 0.007, 0.040, and 0.048. Furthermore, the estimated parameters map well onto dynamics known to operate in the industry, especially for data collected by the BLS. Theoretical and practical implications of these findings are discussed.

2021 ◽  
Vol 19 (2) ◽  
pp. 1355-1372
Author(s):  
Vinicius Piccirillo ◽  

<abstract><p>This work deals with the impact of the vaccination in combination with a restriction parameter that represents non-pharmaceutical interventions measures applied to the compartmental SEIR model in order to control the COVID-19 epidemic. This restriction parameter is used as a control parameter, and the univariate autoregressive integrated moving average (ARIMA) is used to forecast the time series of vaccination of all individuals of a specific country. Having in hand the time series of the population fully vaccinated (real data + forecast), the Levenberg–Marquardt algorithm is used to fit an analytic function that models this evolution over time. Here, it is used two time series of real data that refer to a slow vaccination obtained from India and Brazil, and two faster vaccination as observed in Israel and the United States of America. Together with vaccination, two different control approaches are presented in this paper, which enable reduces the infected people successfully: namely, the feedback and nonfeedback control methods. Numerical results predict that vaccination can reduce the peaks of infections and the duration of the pandemic, however, a better result is achieved when the vaccination is combined with any restrictions or prevention policy.</p></abstract>


2020 ◽  
Author(s):  
Messis Abdelaziz ◽  
Adjebli Ahmed ◽  
Ayeche Riad ◽  
Ghidouche Abderrezak ◽  
Ait-Ali Djida

ABSTRACTCoronavirus disease has become a worldwide threat affecting almost every country in the world. The aim of this study is to identify the COVID-19 cases (positive, recovery and death) in Algeria using the Double Exponential Smoothing Method and an Autoregressive Integrated Moving Average (ARIMA) model for forecasting the COVID-19 cases.The data for this study were obtained from March 21st, 2020 to November 26th, 2020. The daily Algerian COVID-19 confirmed cases were sourced from The Ministry of Health, Population and Hospital Reform of Algeria. Based on the results of PACF, ACF, and estimated parameters of the ARIMA model in the COVID-19 case in Algeria following the ARIMA model (0,1,1). Observed cases during the forecast period were accurately predicted and were placed within the prediction intervals generated by the fitted model. This study shows that ARIMA models with optimally selected covariates are useful tools for monitoring and predicting trends of COVID-19 cases in Algeria.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrea L. Schaffer ◽  
Timothy A. Dobbins ◽  
Sallie-Anne Pearson

Abstract Background Interrupted time series analysis is increasingly used to evaluate the impact of large-scale health interventions. While segmented regression is a common approach, it is not always adequate, especially in the presence of seasonality and autocorrelation. An Autoregressive Integrated Moving Average (ARIMA) model is an alternative method that can accommodate these issues. Methods We describe the underlying theory behind ARIMA models and how they can be used to evaluate population-level interventions, such as the introduction of health policies. We discuss how to select the shape of the impact, the model selection process, transfer functions, checking model fit, and interpretation of findings. We also provide R and SAS code to replicate our results. Results We illustrate ARIMA modelling using the example of a policy intervention to reduce inappropriate prescribing. In January 2014, the Australian government eliminated prescription refills for the 25 mg tablet strength of quetiapine, an antipsychotic, to deter its prescribing for non-approved indications. We examine the impact of this policy intervention on dispensing of quetiapine using dispensing claims data. Conclusions ARIMA modelling is a useful tool to evaluate the impact of large-scale interventions when other approaches are not suitable, as it can account for underlying trends, autocorrelation and seasonality and allows for flexible modelling of different types of impacts.


2022 ◽  
Vol 18 (2) ◽  
pp. 224-236
Author(s):  
Andy Rezky Pratama Syam

Forecasting chocolate consumption is required by producers in preparing the amount of production each month. The tradition of Valentine, Christmas and Eid al-Fitr which are closely related to chocolate makes it impossible to predict chocolate by using the Classical Time Series method. Especially for Eid al-Fitr, the determination follows the Hijri calendar and each year advances 10 days on the Masehi calendar, so that every three years Eid al-Fitr will occur in a different month. Based on this, the chocolate forecasting will show a variation calendar effect. The method used in modeling and forecasting chocolate in Indonesia and the United States is the ARIMAX (Autoregressive Integrated Moving Average Exogenous) method with Calendar Variation effect. As a comparison, modeling and forecasting are also carried out using the Naïve Trend Linear, Naïve Trend Exponential, Double Exponential Smoothing, Time Series Regression, and ARIMA methods. The ARIMAX method with Calendar Variation Effect produces a very precise MAPE value in predicting chocolate data in Indonesia and the United States. The resulting MAPE value is below 10 percent, so it can be concluded that this method has a very good ability in forecasting.


1982 ◽  
Vol 14 (3) ◽  
pp. 156-166 ◽  
Author(s):  
Chin-Sheng Alan Kang ◽  
David D. Bedworth ◽  
Dwayne A. Rollier

Author(s):  
Richard McCleary ◽  
David McDowall ◽  
Bradley J. Bartos

The general AutoRegressive Integrated Moving Average (ARIMA) model can be written as the sum of noise and exogenous components. If an exogenous impact is trivially small, the noise component can be identified with the conventional modeling strategy. If the impact is nontrivial or unknown, the sample AutoCorrelation Function (ACF) will be distorted in unknown ways. Although this problem can be solved most simply when the outcome of interest time series is long and well-behaved, these time series are unfortunately uncommon. The preferred alternative requires that the structure of the intervention is known, allowing the noise function to be identified from the residualized time series. Although few substantive theories specify the “true” structure of the intervention, most specify the dichotomous onset and duration of an impact. Chapter 5 describes this strategy for building an ARIMA intervention model and demonstrates its application to example interventions with abrupt and permanent, gradually accruing, gradually decaying, and complex impacts.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


Sign in / Sign up

Export Citation Format

Share Document