scholarly journals Non-Thermal Emission from Radio-Loud AGN Jets: Radio vs. X-rays

Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Elena Fedorova ◽  
Bohdan Hnatyk ◽  
Antonino Del Popolo ◽  
Anatoliy Vasylenko ◽  
Vadym Voitsekhovskyi

We consider the sample of 55 blazars and Seyferts cross-correlated from the Planck all-sky survey based on the Early Release Compact Source Catalog (ERCSC) and Swift BAT 105-Month Hard X-ray Survey. The radio Planck spectra vs. X-ray Swift/XRT+BAT spectra of the active galactic nuclei (AGN) sample were fitted with the simple and broken power law (for the X-ray spectra taking into account also the Galactic neutral absorption) to test the dependencies between the photon indices of synchrotron emission (in radio range) and synchrotron self-Compton (SSC) or inverse-Compton emission (in X-rays). We show that for the major part of the AGN in our sample there is a correspondence between synchrotron and SSC photon indices (one of two for broken power-law model) compatible within the error levels. For such objects, this can give a good perspective for the task of distinguishing between the jet base counterpart from that one emitted in the disk-corona AGN “central engine”.

1998 ◽  
Vol 11 (2) ◽  
pp. 804-807
Author(s):  
Karen M. Leighly

X-ray variability is a distinguishing property of Active Galactic Nuclei (AGN), and the energetics and time scales of the emission dictate that the X-rays must originate very close to the central engine. In this review I discuss two basic topics from AGN variability research. The first is the correlation of the variability time scale with the X-ray luminosity, and the second is the structure of the X-ray light curve. In each case, I first review the old results that have been known for approximately the last 10 years and then I discuss very new results which may force us to modify our ideas about the origin of AGN X-ray variability. Note that I am discussing the variability of non-blazar type AGN.


1997 ◽  
Vol 163 ◽  
pp. 805-806
Author(s):  
R. Staubert ◽  
T. Dörrer ◽  
C. Müller ◽  
P. Friedrich ◽  
H. Brunner

Soft X-ray spectra of many Active Galactic Nuclei (AGN) show structure which suggests excess emission at low energies, mostly below 1 keV. This was confirmed by the ROSAT spectra (0.1–2.4 keV) AGN in our samples which generally have steeper power law spectra than the canonical index of 0.7. The soft excess component may be the high energy tail of the big blue bump which in turn may be due to the integrated emission from an accretion disk around the central black hole.We discuss results of our spectral analysis of two different samples of AGN: 1) QSO/Seyfert-I from the ROSAT All Sky Survey (RASS) and 2) radio-quiet QSO from ROSAT Pointed Observations. The ROSAT data are combined with UV Data from IUE and hard X-ray data from various hard X-ray missions.


1989 ◽  
Vol 134 ◽  
pp. 255-256
Author(s):  
S. Collin-Souffrin ◽  
A.M. Dumont

If accretion disks are present in AGN and extend to large radii they should contribute substantially to the Broad Line emission. The outer regions of the disk are indeed illuminated by a small amount of ionizing radiation. X-rays are emitted by the central inner region near the black hole, and they are either received directly by the outer disk, owing to its “flaring” shape (Cunningham, 1976), or partly reflected towards the disk by a hot Compton thin medium (Begelmann and McKee, 1983). X-ray photons are also produced through the Inverse Compton mechanism in compact radio sources located above the disk(“jet model”).


1999 ◽  
Vol 194 ◽  
pp. 306-310
Author(s):  
Q. Yuan ◽  
J. Wu ◽  
K. Huang

This paper presents a test of the luminosity correlation of the X-ray selected radio-loud Active Galactic Nuclei (AGNs), based on a large sample constructed by combining our cross-identification of southern sky sources with the radio-loud sources in the northern hemisphere given by Brinkmann et al. (1995). All sources were detected both by the ROSAT All-Sky Survey and the radio surveys at 4.85 GHz. The broad band energy distribution confirms the presence of strong correlations between luminosities in the radio, optical, and X-ray bands which differ for quasars, seyferts, BL Lacs, and radio galaxies. The tight correlations between spectral indices αox and monochromatic luminosities at 5500 Å and 4.85 GHz are also shown.


1984 ◽  
Vol 287 ◽  
pp. 534 ◽  
Author(s):  
I. Schlosman ◽  
J. Shaham ◽  
G. Shaviv

2019 ◽  
Vol 486 (1) ◽  
pp. 1094-1122 ◽  
Author(s):  
Jonathan Mackey ◽  
Stefanie Walch ◽  
Daniel Seifried ◽  
Simon C O Glover ◽  
Richard Wünsch ◽  
...  

ABSTRACT Sources of X-rays such as active galactic nuclei and X-ray binaries are often variable by orders of magnitude in luminosity over time-scales of years. During and after these flares the surrounding gas is out of chemical and thermal equilibrium. We introduce a new implementation of X-ray radiative transfer coupled to a time-dependent chemical network for use in 3D magnetohydrodynamical simulations. A static fractal molecular cloud is irradiated with X-rays of different intensity, and the chemical and thermal evolution of the cloud are studied. For a simulated $10^5\, \mathrm{M}_\odot$ fractal cloud, an X-ray flux <0.01 erg cm−2 s−1 allows the cloud to remain molecular, whereas most of the CO and H2 are destroyed for a flux of ≥1 erg cm−2 s−1. The effects of an X-ray flare, which suddenly increases the X-ray flux by 105×, are then studied. A cloud exposed to a bright flare has 99 per cent of its CO destroyed in 10–20 yr, whereas it takes >103 yr for 99 per cent of the H2 to be destroyed. CO is primarily destroyed by locally generated far-UV emission from collisions between non-thermal electrons and H2; He+ only becomes an important destruction agent when the CO abundance is already very small. After the flare is over, CO re-forms and approaches its equilibrium abundance after 103–105 yr. This implies that molecular clouds close to Sgr A⋆ in the Galactic Centre may still be out of chemical equilibrium, and we predict the existence of clouds near flaring X-ray sources in which CO has been mostly destroyed but H is fully molecular.


1989 ◽  
Vol 134 ◽  
pp. 167-172
Author(s):  
Katsuji Koyama

X-ray emission in the 2–10 keV energy range was observed with the Ginga satellite from the Seyfert 2 galaxy NGC1068. The continuum spectrum can be described by a power-law of photon index about 1.5. An intense iron line at 6.5 keV with an equivalent width of 1.3 keV was clearly noticed. The X-ray flux was about 6 × 10 −12 erg/sec/cm2 or 3 × 1041 erg/sec, assuming a distance of 22 Mpc. The observed spectrum is consistent with the scattering and reprocessing of X-rays by the gas surrounding the central engine. With this picture we estimate that the X-ray flux of the central engine is about 1043 - 1044 erg/sec, a typical value for a Seyfert 1 galaxy.


2002 ◽  
Vol 19 (4) ◽  
pp. 401-421 ◽  
Author(s):  
Philip R. Maloney

AbstractLuminous water maser emission in the 616–523 line at 22GHz has been detected from two dozen galaxies. In all cases the emission is confined to the nucleus and has been found only in AGN, in particular, in Type 2 Seyferts and LINERs. I argue that most of the observed megamaser sources are powered by X-ray irradiation of dense gas by the central engine. After briefly reviewing the physics of these X-Ray Dissociation Regions, I discuss in detail the observations of the maser disk in NGC 4258, its implications, and compare alternative models for the maser emission. I then discuss the observations of the other sources that have been imaged with VLBI to date, and how they do or do not fit into the framework of a thin, rotating disk, as in NGC 4258. Finally, I briefly discuss future prospects, especially the possibility of detecting other water maser transitions.


1983 ◽  
Vol 6 ◽  
pp. 491-498 ◽  
Author(s):  
A.C. Fabian

Recent X-ray observations of active galactic nuclei and Seyfert galaxies in particular are briefly reviewed. The application of the efficiency limit to rapidly varying luminous sources such as NGC 6814 is discussed. It is argued that the variability and probable MeV spectral turnover imply that most of the electrons which radiate the observed flux are only mildly relativistic. A possible link between the steep soft X-ray spectra and featureless optical continua of BL Lac objects is considered.


Sign in / Sign up

Export Citation Format

Share Document