scholarly journals Synthesis and Characterization of Silver–Strontium (Ag-Sr)-Doped Mesoporous Bioactive Glass Nanoparticles

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.

Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc. are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag) and strontium (Sr) doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ & Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in-vitro bioactivity. The Ag-Sr MBGNs synthesize in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 423 ◽  
Author(s):  
Francesca Ciraldo ◽  
Kristin Schnepf ◽  
Wolfgang Goldmann ◽  
Aldo Boccaccini

Resorbable (Vicryl® Plus) sutures were coated with zinc-doped glass (Zn-BG) and silver-doped ordered mesoporous bioactive glass (Ag-MBG) particles by a dip coating technique. A multilayer approach was used to achieve robust coatings. The first coating was a polymeric layer (e.g., PCL or chitosan) and the second one was a composite made of BG particles in a polymer matrix. The coatings were characterized in terms of morphology by scanning electron microscopy (SEM), in vitro bioactivity, and antibacterial properties. Chitosan/Ag-MBG coatings showed the ability to form hydroxyl-carbonate-apatite on their surfaces after immersion in SBF. An antibacterial effect against Gram (+) and Gram (-) bacteria was confirmed, highlighting the potential application of the coated sutures for antibiotic-free approaches.


2020 ◽  
Vol 31 (8) ◽  
pp. 3307-3317 ◽  
Author(s):  
Weihan Xie ◽  
Xueying Chen ◽  
Yuli Li ◽  
Guohou Miao ◽  
Gang Wang ◽  
...  

2010 ◽  
Vol 30 (5) ◽  
pp. 657-663 ◽  
Author(s):  
C.J. Shih ◽  
H.T. Chen ◽  
L.F. Huang ◽  
P.S. Lu ◽  
H.F. Chang ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 4246
Author(s):  
Muhammad Maqbool ◽  
Qaisar Nawaz ◽  
Muhammad Atiq Ur Atiq Ur Rehman ◽  
Mark Cresswell ◽  
Phil Jackson ◽  
...  

In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32−) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell–material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.


Sign in / Sign up

Export Citation Format

Share Document