scholarly journals Instantaneous Degelling Thermoresponsive Hydrogel

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 169
Author(s):  
Noam Y. Steinman ◽  
Abraham J. Domb

Responsive polymeric hydrogels have found wide application in the clinic as injectable, biocompatible, and biodegradable materials capable of controlled release of therapeutics. In this article, we introduce a thermoresponsive polymer hydrogel bearing covalent disulfide bonds. The cold aqueous polymer solution forms a hydrogel upon heating to physiological temperatures and undergoes slow degradation by hydrolytic cleavage of ester bonds. The disulfide functionality allows for immediate reductive cleavage of the redox-sensitive bond embedded within the polymer structure, affording the option of instantaneous hydrogel collapse. Poly (ethylene glycol)-b-poly (lactic acid)-S-S-poly (lactic acid)-b-poly (ethylene glycol) (PEG-PLA-SS-PLA-PEG) copolymer was synthesized by grafting PEG to PLA-SS-PLA via urethane linkages. The aqueous solution of the resultant copolymer was a free-flowing solution at ambient temperatures and formed a hydrogel above 32 °C. The immediate collapsibility of the hydrogel was displayed via reaction with NaBH4 as a relatively strong reducing agent, yet stability was displayed even in glutathione solution, in which the polymer degraded slowly by hydrolytic degradation. The polymeric hydrogel is capable of either long-term or immediate degradation and thus represents an attractive candidate as a biocompatible material for the controlled release of drugs.

2016 ◽  
Vol 32 (3) ◽  
pp. 225-241 ◽  
Author(s):  
Alena Pavelková ◽  
Pavel Kucharczyk ◽  
Zdenka Kuceková ◽  
Jiří Zedník ◽  
Vladimír Sedlařík

Poly(lactic acid)-based polymers are highly suitable for temporary biomedical applications, such as tissue support or drug delivery systems. Copolymers of different molecular weight based on poly(lactic acid) and poly(ethylene glycol) were prepared by polycondensation, catalysed by hydrochloric acid. A chain-extension reaction with l-lysine ethyl ester diisocyanate was employed afterwards to obtain polyester urethanes with enhanced properties. The GPC results showed that the molecular weights of the products reached about 50,000 g·mol−1 and the hydrolytic progress was rapid in the first 2 weeks; the drop in Mn equalled approximately 70%. Additionally, elemental analysis of the buffer medium proved that hydrolytic degradation was more rapid in the first stage. Tensile-strength testing revealed that ductility increased alongside reduced molecular weight of poly(ethylene glycol), also suggesting that polymer branching occurred due to side reactions of isocyanate. Based on the envisaged biomedical applications for these polymers, cytotoxicity tests were carried out and the cytotoxic effect was only moderate in the case of 100% polymer extract prepared according to ISO standard 10993-12. In their research, the authors focused on preparing metal-free, catalysed synthesis of polyester urethanes, which could prove useful to numerous biomedical applications.


2015 ◽  
Vol 133 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Weraporn Pivsa-Art ◽  
Kazunori Fujii ◽  
Keiichiro Nomura ◽  
Yuji Aso ◽  
Hitomi Ohara ◽  
...  

Author(s):  
Mihir Sheth ◽  
R. Ananda Kumar ◽  
Vipul Dav� ◽  
Richard A. Gross ◽  
Stephen P. McCarthy

Sign in / Sign up

Export Citation Format

Share Document