amino silane
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 35)

H-INDEX

23
(FIVE YEARS 6)

2022 ◽  
Vol 29 (2) ◽  
pp. 356-367
Author(s):  
Yonghao Di ◽  
Fang Yuan ◽  
Xiaotian Ning ◽  
Hongwei Jia ◽  
Yangyu Liu ◽  
...  

2022 ◽  
Author(s):  
Jialong Yu ◽  
Weiyu Wang ◽  
Shumin Li ◽  
Beibei Yu ◽  
Hongyu Chen ◽  
...  

Seaweed-like Au nanowires were synthesized without any nanoparticle seeds. The amino silcane coupling agent 3-aminopropyltriethoxysilane was used to form the active surface on Au substrate to facilitate one dimensional growth....


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7649
Author(s):  
Muhammad I. Qureshi ◽  
Basit Qureshi

In this experimental investigation, hydrophobic silane-grafted fumed nano-silica was employed in transformer oil to formulate nanofluids (NFs). A cold-air atmosphere-pressure plasma reactor working on the principle of dielectric barrier discharge was designed and utilized to functionalize the surface of these nanoparticles. A field emission scanning electron microscope (FE-SEM) coupled with energy-dispersive X-ray (EDX) module and Fourier transform infrared (FTIR) spectroscopy were used to scan surface features of new and plasma-treated nanoparticles. The study revealed considerable changes in the surface chemistry of nanoparticles, which led to good dispersibility and stability of nanofluids. The measurements of AC breakdown voltages (AC-BDV) of nanofluids so prepared were conducted according to IEC-Std 60156, and a significant improvement in the dielectric strength was achieved. A statistical analysis of these results was performed using Weibull probabilistic law. At a 5% probability of failure, modified nanofluid remarkably exhibited a 60% increase in breakdown voltage. The dielectric properties such as variation of εr and tan δ in temperature of up to 70 °C were measured and compared with untreated fluid. Results exhibit an increase in tan δ and a slight decrease in permittivity of nanofluids. The analysis also revealed that while unpolar silane coating of NPs increased the breakdown strength, the polar-amino-silane-coated NPs in oil resulted in a drastic reduction. Details of this antagonistic trend are elaborated in this paper.


2021 ◽  
Vol 176 ◽  
pp. 49-59
Author(s):  
Salman Ahmadipouya ◽  
Farhad Ahmadijokani ◽  
Hossein Molavi ◽  
Mashallah Rezakazemi ◽  
Mohammad Arjmand

Author(s):  
Jin Wang ◽  
Hiroki Nagata ◽  
Masaki Ando ◽  
Yuichi Yoshida ◽  
Kenji Sakai ◽  
...  

Abstract This study focuses on the visualization of a charge-transfer complex, namely a Meisenheimer complex, for the detection of uncharged 2, 4, 6-trinitrotoluene (TNT) explosives by developing a terahertz chemical microscope (TCM) imaging system. The organic amine 3-aminopropyltriethoxysilane (APTES) was immobilized on an SiO2-film-coated TCM sensing plate, where it interacted with TNT molecules. The surface electrical potential distribution of TNT, APTES, and the charge-transfer complex was mapped. An electrical potential shift occurred due to the formation of a charge-transfer complex between the electron-rich amino-silane APTES and electron-deficient TNT molecules on the surface of the sensing plate. The electrical imaging and detection of TNT explosives by using the TCM imaging system were demonstrated by measuring the amplitude of the terahertz pulse caused by this electrical potential shift. N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane and N1-(3-trimethoxysilylpropyl)diethylenetriamine were used for further evaluation and comparison of color changes arising from the amine-TNT interactions. The results have shown that TCM imaging is a promising method for the detection of uncharged TNT explosives at a low (sub-parts-per-million) concentration.


Sign in / Sign up

Export Citation Format

Share Document