protein encapsulation
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 30)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 448 ◽  
pp. 214188
Author(s):  
Ana V. Almeida ◽  
Ana J. Carvalho ◽  
Alice S. Pereira

Langmuir ◽  
2021 ◽  
Author(s):  
Paola Astolfi ◽  
Elisabetta Giorgini ◽  
Diego Romano Perinelli ◽  
Francesco Vita ◽  
Fabrizio Corrado Adamo ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 7134
Author(s):  
Michael Mertz ◽  
Kathrin Castiglione

Hollow vesicles made from a single or double layer of block-copolymer molecules, called polymersomes, represent an important technological platform for new developments in nano-medicine and nano-biotechnology. A central aspect in creating functional polymersomes is their combination with proteins, especially through encapsulation in the inner cavity of the vesicles. When producing polymersomes by techniques such as film rehydration, significant proportions of the proteins used are trapped in the vesicle lumen, resulting in high encapsulation efficiencies. However, because of the difficulty of scaling up, such methods are limited to laboratory experiments and are not suitable for industrial scale production. Recently, we developed a scalable polymersome production process in stirred-tank reactors, but the statistical encapsulation of proteins resulted in fairly low encapsulation efficiencies of around 0.5%. To increase encapsulation in this process, proteins were genetically fused with hydrophobic membrane anchoring peptides. This resulted in encapsulation efficiencies of up to 25.68%. Since proteins are deposited on the outside and inside of the polymer membrane in this process, two methods for the targeted removal of protein domains by proteolysis with tobacco etch virus protease and intein splicing were evaluated. This study demonstrates the proof-of-principle for production of protein-functionalized polymersomes in a scalable process.


Author(s):  
Rémi G. Tilkin ◽  
Julien G. Mahy ◽  
Nicolas Régibeau ◽  
Romain Vandeberg ◽  
Ana P. F. Monteiro ◽  
...  

2021 ◽  
Author(s):  
Nicholas Zervoudis ◽  
Allie Obermeyer

The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein’s binodal phase boundary. Protein concentrations over 100 mg mL<sup>-1</sup> were achieved in the coacervate phase, with concentrations dependent on the polypeptide sequence. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.


2021 ◽  
Author(s):  
Nicholas Zervoudis ◽  
Allie Obermeyer

The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein’s binodal phase boundary. Protein concentrations over 100 mg mL<sup>-1</sup> were achieved in the coacervate phase, with concentrations dependent on the polypeptide sequence. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Thomas Litschel ◽  
Petra Schwille

Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein–membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Soft Matter ◽  
2021 ◽  
Author(s):  
Nicholas A. Zervoudis ◽  
Allie C. Obermeyer

Charge patterned polypeptides modulate the complex coacervation of globular proteins with polymers. These protein coacervates have applications in protein encapsulation and delivery and in determining the function of biomolecular condensates.


Sign in / Sign up

Export Citation Format

Share Document