scholarly journals Hybrid Sol-Gel Coatings Doped with Non-Toxic Corrosion Inhibitors for Corrosion Protection on AZ61 Magnesium Alloy

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Luis Rodríguez-Alonso ◽  
Jesús López-Sánchez ◽  
Aida Serrano ◽  
Oscar Rodríguez de la Fuente ◽  
Juan Carlos Galván ◽  
...  

Physiological human fluid is a natural corrosive environment and can lead to serious corrosion and mechanical damages to light Mg–Al alloys used in prosthetics for biomedical applications. In this work, organic–inorganic hybrid coatings doped with various environmentally friendly and non-toxic corrosion inhibitors have been prepared by the sol-gel process for the corrosion protection of AZ61 magnesium alloys. Effectiveness has been evaluated by pH measurements, optical microscopy, and SEM during a standard corrosion test in a Hanks’ Balanced Salt Solution. The results showed that the addition of an inhibitor to the sol-gel coating can improve significantly the corrosion performance, being an excellent barrier for the L-cysteine-doped hybrid sol-gel films. The incorporation of TiO2 nanoparticles, 2-Aminopyridine and quinine organic molecules slowed down the corrosion rate of the Mg–Al alloy. Graphene oxide seemed to have the same response to corrosion as the hybrid sol-gel coating without inhibitors.

2008 ◽  
Vol 587-588 ◽  
pp. 390-394 ◽  
Author(s):  
Alexandre Ferreira Galio ◽  
Sviatlana V. Lamaka ◽  
Mikhail L. Zheludkevich ◽  
L.F. Dick ◽  
Iduvirges Lourdes Müller ◽  
...  

Magnesium is one of the lightest metals and magnesium alloys have good strength to weight ratio making them very attractive for many particular applications [1]. The main drawback of magnesium alloys is their high corrosion susceptibility. Improving the corrosion protection by deposition of thin hybrid films can expand the areas of applications of relatively cheap magnesium alloys. This work aims at investigation of new anticorrosion coating systems for magnesium alloy AZ31B using hybrid sol-gel films. The sol-gels were prepared by copolymerization of 3- glycidoxypropyltrimethoxysilane (GPTMS), titanium alcoxides and special additives which provide corrosion protection of magnesium alloy. Different compositions of sol-gel systems show enhanced long-term corrosion protection of magnesium alloy. The sol-gel coatings exhibit excellent adhesion to the substrate and protect against the corrosion attack. Corrosion behavior of AZ31B substrates pre-treated with sol–gel derived hybrid coatings was tested by Electrochemical Impedance Spectroscopy (EIS). The morphology and the structure of sol-gel films under study were characterized with SEM/EDS techniques.


2012 ◽  
Vol 05 ◽  
pp. 234-241 ◽  
Author(s):  
NAHID PIRHADY TAVANDASHTI ◽  
SOHRAB SANJABI

Nanostructured hybrid silica/epoxy films containing boehmite nanoparticles were investigated in the present work as pretreatments for AA2024 alloy. To produce the nanocomposite sol-gel films, boehmite nanoparticles prepared from hydrolysis/condensation of aluminum isopropoxide ( AlI ) were doped into another hybrid organosiloxane sol. The produced oxide nanoparticles have the capability to act as nanoreservoirs of corrosion inhibitors, releasing them controllably to protect the metallic substrate from corrosion. For this purpose the corrosion inhibitor, cerium nitrate, was introduced into the sol-gel system via loading the nanoparticles. The morphology and the structure of the hybrid sol-gel films were studied by Scanning Electron Microscopy (SEM). The corrosion protection properties of the films were investigated by Potentiodynamic Scanning (PDS) and Electrochemical Impedance Spectroscopy (EIS). The results show that the presence of boehmite nanoparticles highly improved the corrosion protection performance of the silica/epoxy coatings. Moreover, they can act as nanoreservoirs of corrosion inhibitors and provide prolonged release of cerium ions, offering a self-healing property to the film.


2010 ◽  
Vol 204 (16-17) ◽  
pp. 2689-2701 ◽  
Author(s):  
V.H.V. Sarmento ◽  
M.G. Schiavetto ◽  
P. Hammer ◽  
A.V. Benedetti ◽  
C.S. Fugivara ◽  
...  

2009 ◽  
Vol 25 (5) ◽  
pp. 393-402 ◽  
Author(s):  
H. Hassannejad ◽  
T. Shahrabi ◽  
M. Aliofkhazraei

2010 ◽  
Vol 1278 ◽  
Author(s):  
L.L. Díaz-Flores ◽  
A. S. López Rodríguez ◽  
P. SifuentesGallardo ◽  
M.A. Hernàndez Rivera ◽  
M.a Garnica Romo ◽  
...  

AbstractThis work is about the production of hybrid coatings of the system SiO2-PMMA (PMMA, polymethylmethacrylate). These materials have interesting mechanical and chemical properties useful for anticorrosive and wear resistance applications. SiO2-PMMA hybrids were obtained by the sol-gel traditional process, using tetraethylorthosilicate (TEOS) and methylmethacrylate (MMA) by Aldrich Co, as starting reagents. The SiO2:PMMA ratio was varied from 0:1 to about 1:1 at air atmosphere deposition. The coatings were obtained on acrylic sheets and silicon wafers. A diversity of coatings with chemical composition ranging from SiO2 and PMMA to obtain the SiO2-PMMA hybrids were obtained. Infrared (IR) and atomic force microscopy (AFM), were performed to determinate structural and morphological behavior.


2012 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Nazanin Farhadyar ◽  
Mirabdullah Seyed Sadjadi

In this paper, we report preparation of hydrophilic hybrid nanocomposite coatings on glass substrates using Zinc acetate solutions based on 3-glycidoxypropyltrimethoxysilane (GPTMS), epoxy resin, aromatic amine (HY850), polyethylene glycol (PEG) and surfactant (polyoxyethylene(4)laurylether) by the sol-gel process. Furthermore, the effects of PEG addition to the precursor solutions on the hydrophilic property and microstructure of the resultant coating film were studied. The hydrophilic behavior study of the synthesized hybrid was performed by adding different amounts of polyethylene glycol precursor to the hybrid solution. Experimental results show that, among different amounts of PEGs, the best results are obtained by addition of PEGs (400) to the hybrid solution which can decrease the water contact angles down to 16 and using surfactant down to 0, and increase the free surface energy. Coated glass exhibits a higher strength than uncoated glass. Attenuated total reflectance infrared spectroscopic (ATR-IR) technique was used to characterize the structure of the hybrid films. The chemical structure of obtained network affects morphology of the coating. The morphology of the hybrid coatings was examined by transmission electron microscopy (TEM). The hybrid systems have a unit form structure and the inorganic phases were in the nanosize scale,


Sign in / Sign up

Export Citation Format

Share Document