scholarly journals Complete Mitochondrial DNA Genome of Nine Species of Sharks and Rays and Their Phylogenetic Placement among Modern Elasmobranchs

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 324
Author(s):  
Vasiliki Kousteni ◽  
Sofia Mazzoleni ◽  
Katerina Vasileiadou ◽  
Michail Rovatsos

Chondrichthyes occupy a key position in the phylogeny of vertebrates. The complete sequence of the mitochondrial genome (mitogenome) of four species of sharks and five species of rays was obtained by whole genome sequencing (DNA-seq) in the Illumina HiSeq2500 platform. The arrangement and features of the genes in the assembled mitogenomes were identical to those found in vertebrates. Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were used to reconstruct the phylogenetic relationships among 172 species (including 163 mitogenomes retrieved from GenBank) based on the concatenated dataset of 13 individual protein coding genes. Both ML and BI analyses did not support the “Hypnosqualea” hypothesis and confirmed the monophyly of sharks and rays. The broad notion in shark phylogeny, namely the division of sharks into Galeomorphii and Squalomorphii and the monophyly of the eight shark orders, was also supported. The phylogenetic placement of all nine species sequenced in this study produced high statistical support values. The present study expands our knowledge on the systematics, genetic differentiation, and conservation genetics of the species studied, and contributes to our understanding of the evolutionary history of Chondrichthyes.

2018 ◽  
Author(s):  
Ian Bbole ◽  
Jin-Liang Zhao ◽  
Shou-Jie Tang ◽  
Cyprian Katongo

AbstractGenetic characterization of southern African cichlids has not received much attention. Here, we describe the mitogenome sequences and phylogenetic positioning of Oreochromis andersonii and O. macrochir among the cichlids of southern Africa. The complete mitochondrial DNA sequences were determined for O. andersonii and O. macrochir, two important aquaculture and fisheries species endemic to southern Africa. The complete mitogenome sequence lengths were 16642 bp and 16644 bp for O. andersonii and O. macrochir respectively. The general structural organization follows that of other teleost species with 13 protein–coding genes, 2 rRNAs, 22 tRNAs and a non-coding control region. Phylogenetic placement of the two species among other African cichlids was performed using Maximum Likelihood (ML) and Bayesian Markov-Chain-Monte-Carlo (MCMC). The consensus trees confirmed the relative positions of the two cichlid species with O. andersonii being very closely related to O. mossambicus and O. macrochir showing a close relation to both species. Among the 13 mitochondrial DNA protein coding genes ND6 may have evolved more rapidly and COIII was the most conserved. There are signs that ND6 may have been subjected to positive selection in order for these cichlid lineages to diversity and adapt to new environments. More work is needed to characterize the southern Africa cichlids as they are important species for capture fisheries, aquaculture development and understanding biogeographic history of African cichlids. Bioconservation of some endangered cichlids is also essential due to the threat by invasive species.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e81952 ◽  
Author(s):  
Sevgin Demirci ◽  
Evren Koban Baştanlar ◽  
Nihan Dilşad Dağtaş ◽  
Evangelia Pişkin ◽  
Atilla Engin ◽  
...  

The Auk ◽  
2003 ◽  
Vol 120 (2) ◽  
pp. 346-361
Author(s):  
Erik A. Sgariglia ◽  
Kevin J. Burns

Abstract Distribution of genealogical lineages within a species is likely the result of a complicated series of ecological and historical events. Nested-clade analysis is specifically designed as an objective phylogeographic approach for inferring evolutionary processes on a spatial and temporal scale for small subclades within a larger set of intraspecific relationships. Here, we use nested-clade analysis as well as other phylogeographic methods to investigate the evolutionary history of California Thrasher (Toxostoma redivivum) populations. Inferences resulting from nested clade analysis suggest a history that includes past fragmentation, range expansion, and isolation-by-distance. Along with root information, those inferences enable the construction of a biogeographic scenario for this species involving general southern ancestry, an early north–south division, northward range expansion, and a southward back-expansion into an already populated southern region. Isolation-by-distance is also identified, particularly in southern California, indicating that gene flow between localities does occur but is restricted. Many conclusions drawn from this study are concordant with geologic data as well as phylogeographic scenarios drawn for other codistributed California taxa.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandre Freitas da Silva ◽  
Laís Ceschini Machado ◽  
Marcia Bicudo de Paula ◽  
Carla Júlia da Silva Pessoa Vieira ◽  
Roberta Vieira de Morais Bronzoni ◽  
...  

Abstract Mosquitoes are insects of medical importance due their role as vectors of different pathogens to humans. There is a lack of information about the evolutionary history and phylogenetic positioning of the majority of mosquito species. Here we characterized the mitogenomes of mosquito species through low-coverage whole genome sequencing and data mining. A total of 37 draft mitogenomes of different species were assembled from which 16 are newly-sequenced species. We datamined additional 49 mosquito mitogenomes, and together with our 37 mitogenomes, we reconstructed the evolutionary history of 86 species including representatives from 15 genera and 7 tribes. Our results showed that most of the species clustered in clades with other members of their own genus with exception of Aedes genus which was paraphyletic. We confirmed the monophyletic status of the Mansoniini tribe including both Coquillettidia and Mansonia genus. The Aedeomyiini and Uranotaeniini were consistently recovered as basal to other tribes in the subfamily Culicinae, although the exact relationships among these tribes differed between analyses. These results demonstrate that low-coverage sequencing is effective to recover mitogenomes, establish phylogenetic knowledge and hence generate basic fundamental information that will help in the understanding of the role of these species as pathogen vectors.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Hume Stroud ◽  
Bo Ding ◽  
Stacey A Simon ◽  
Suhua Feng ◽  
Maria Bellizzi ◽  
...  

Most transgenic crops are produced through tissue culture. The impact of utilizing such methods on the plant epigenome is poorly understood. Here we generated whole-genome, single-nucleotide resolution maps of DNA methylation in several regenerated rice lines. We found that all tested regenerated plants had significant losses of methylation compared to non-regenerated plants. Loss of methylation was largely stable across generations, and certain sites in the genome were particularly susceptible to loss of methylation. Loss of methylation at promoters was associated with deregulated expression of protein-coding genes. Analyses of callus and untransformed plants regenerated from callus indicated that loss of methylation is stochastically induced at the tissue culture step. These changes in methylation may explain a component of somaclonal variation, a phenomenon in which plants derived from tissue culture manifest phenotypic variability.


Sign in / Sign up

Export Citation Format

Share Document