scholarly journals Geomorphologic Recovery of North Captiva Island from the Landfall of Hurricane Charley in 2004

Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 358
Author(s):  
Emma Wilson Kelly ◽  
Felix Jose

Hurricane Charley made landfall on the Gulf Coast of Florida on 13 August 2004 as a category 4 hurricane, devastating North Captiva Island. The hurricane caused a breach to occur to the southern end of the island, which naturally healed itself over the course of three years. By 2008, the cut was completely repaired geomorphologically. LiDAR data analysis shows the northern half of the island has been subjected to persistent erosion from 1998–2018, while the southern half experienced accretion since 2004, including the complete closure of the “Charley cut”. The maximum volume of sediment erosion in the northern sector of the island (R71–R73) from 2004–2018 was −85,710.1 m3, which was the source of southern accretion. The breached area of the island (R78b–R79a) obtained 500,163.9 m3 of sediments from 2004–2018 to heal the cut made by Hurricane Charley. Along with LiDAR data analysis, Google Earth Pro historical imageries and SANDS volumetric analysis confirmed the longshore transport of sediments from the northern to the southern end of the island. Winter storms are mainly responsible for this southerly longshore transport and are hypothesized to be the main factor driving the coastal dynamics that restored the breach and helps in widening the southern end of North Captiva Island.

2013 ◽  
Author(s):  
Hiroshi Okumura ◽  
Shoichiro Takubo ◽  
Takeru Kawasaki ◽  
Indra Nugraha Abdullah ◽  
Osamu Uchino ◽  
...  

The chief circumstance that induced Capt. Flinders to think his observations Upon the marine barometer were worthy of attention, was the coincidence that took place between the rising and falling of the mercury, and the setting in of winds that blew from the sea and from off the land, to which there seemed to be at least as much reference as to the strength of the wind or the state of the atmosphere. Our author’s examination of the coasts of New Holland and the other parts of the Terra Australis, began at Cape Leuwen, and con­tinued eastward along the south coast. His observations, which, on account of their length, we must pass over, show, that a change of wind from the northern half of the compass to any point in the southern half, caused the mercury to rise; and that a contrary change caused it to fall. Also, that the mercury stood considerably higher When the wind came from the south side of east and west, than when, in similar weather, it came from the north side.


Author(s):  
Michael Martin

Terrestrial LIDAR scanners are pushing the boundaries of accurate urban modelling. Automation and the usability of tools used in feature abstraction and, to a lesser degree, presentation have become the chief concerns with this new technology. To broaden the use and impact of LIDAR in the geomatics, LiDAR datasets must be converted to feature-based representations without loss of precision. One approach, taken here, is to simultaneously examine the overall path that data takes through an organization and the operatordriven tasks carried out on the data as it is transformed from a raw point cloud to final product. We present a review of the current practices in LiDAR data processing and a foundation for future efforts to optimize. We examine alternative LIDAR processing workflows with two key questions in mind: computational efficiency - whether the process can be done using the tools at all - and tool complexity - what operator skill level is needed at each step. Using these workflows the usability of the specific software tools and the required knowledge to effectively carry out the procedures using the tools are examined. Preliminary results have yielded workflows that successfully translate LIDAR to 3D object models, highly decimated point representations of street data represented in Google Earth, and large volume point data flythroughs in ESRI ArcScene. We are documenting the pragmatic limits on each of these workflows and tools for endusers. Terrestrial LIDAR brings with it new innovations for spatial visualizations, but also questions of viability. The technology has proved valuable for specialized applications for experts, but can it be useful as a tool for proliferating 3d spatial information by and to non-experts. This study illustrates the issues associated with preparing 3d LIDAR data for presentation in mainstream visualization environments.


1950 ◽  
Vol 1 (08) ◽  
pp. 404-409 ◽  
Author(s):  
Alan Reece

The author describes the ice in Crown Prince Gustav Channel on the east coast of Graham Land, Antarctica, based mainly on observations made by members of the Falkland Islands Dependencies Survey in 1945–48. He considers that the ice in the northern half of the Channel is landfast sea ice which may persist for more than one season, and, that in the southern half it is shelf ice of the same origin as the Larsen Shelf Ice. He concludes that this shelf ice in the southern part of the Channel is part of the Larsen Shelf Ice.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdi A. Zurqani ◽  
Christopher J. Post ◽  
Elena A. Mikhailova ◽  
Michael P. Cope ◽  
Jeffery S. Allen ◽  
...  

2019 ◽  
Vol 228 ◽  
pp. 1-13 ◽  
Author(s):  
Qiusheng Wu ◽  
Charles R. Lane ◽  
Xuecao Li ◽  
Kaiguang Zhao ◽  
Yuyu Zhou ◽  
...  

1992 ◽  
Vol 56 (384) ◽  
pp. 319-327 ◽  
Author(s):  
Zenaide C. G. Silva

AbstractThe gabbro-anorthosite complex of SW Angola and Namibia (Kunene Complex) is dominated by anorthosite-troctolite cumulates. Other broadly gabbroic rock types are subordinate. An-rich plagioclase (max. An85) and Fo-rich olivine (max. Fo79) are common in the western area of the complex with plagioclase becoming gradually less anorthitic (min. An45) and olivine less forsteritic (min. Fo62) toward the east. This cryptic change is more pronounced in the northern half of the complex where rocks are darker, fresh, and the rhythmic layering is also more conspicuous. Within the white 'massive' anorthosite type, which is largely restricted to the southern half of the intrusion, cryptic layering is less pronounced. Textures indicate that rocks cooled very slowly and the co-existing mineral compositions indicate re-equilibration to usually low temperatures.


Active and recent faulting along the main north—south road in Tibet is dominated by normal faulting occurring on northerly-trending planes and by strike-slip faulting, both of which reflect an east-west extension of the plateau. Normal faulting is prevalent in the southern half of the plateau, but we saw no evidence for any major graben in the northern half. Strike-slip faulting on roughly easterly-trending structures is m ore prevalent in the northern half, but conjugate faulting, with right-lateral slip on northwesterly-trending planes and left-lateral slip on northeasterly-trending planes, is common in the southern half. In two areas, we also observed components of thrust faulting, apparently in association with young strikeslip faulting. Our most important results are bounds on the rates of slip on the two main strands of the Kunlun strike-slip fault system, which trends east-w est through the Kunlun range. Ground moraine containing boulders of pyroxenite is separated by 30 km from the nearest outcrop of such rock, implying that amount of displacement in the last 1.5 to 3 M a. Therefore the average rate of slip during the Quaternary period has been between 10 and 20 mm/a , with a likely value of 13 mm/a . Abundant fresh tension cracks and mole tracks imply continued slip on the main strand, the Xidatan -Tuosuohu-Maqu fault, and the likely occurrence of a major earthquake in the last few hundred years. Consistent offsets of gullies and dry stream channels of about 10 m may reflect slip of that amount during such an earthquake, and possible multiple offsets at one site suggest that slip may occur by large displacements of 10 m during infrequent great earthquakes. Along the other strand, the Kunlun Pass fault, offsets of roughly 50 to 150 m of, apparently, post-glacial valleys and of one glacier and its terminal moraine suggest a Holocene rate of slip between 5 and 20 mm/a , and most likely about 10 mm/a , on this fault. These rapid rates of displacement imply that Tibet is being extruded rapidly eastward, at a rate com parable to the rate at which India is penetrating into Eurasia, and therefore that, at present, a substantial fraction of this penetration is being absorbed by the eastward extrusion of Tibet.


Sign in / Sign up

Export Citation Format

Share Document