scholarly journals Proteomic Characterization of Spontaneous Stress-Induced In Vitro Apoptosis of Human Acute Myeloid Leukemia Cells; Focus on Patient Heterogeneity and Endoplasmic Reticulum Stress

Hemato ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 607-627
Author(s):  
Elise Aasebø ◽  
Annette K. Brenner ◽  
Maria Hernandez-Valladares ◽  
Even Birkeland ◽  
Håkon Reikvam ◽  
...  

In vitro culture is widely used for characterization of primary human acute myeloid leukemia (AML) cells, but even when using optimized handling and culture conditions the AML cells show spontaneous in vitro apoptosis with a gradual decrease in cell viability during culture. The extent of this stress-induced apoptosis varies between patients, and a high degree of apoptosis is associated with high pre-culture BCL2 levels together with low levels of BAX and Heat Shock Proteins 30 and 90. We compared the global proteomic profiles during ongoing in vitro apoptosis for patients with high and low AML cell viability (i.e., less extensive versus extensive spontaneous apoptosis) after 48 h of culture. We identified 7902 proteins, but only 276 proteins differed significantly between patients with high (i.e., >25% viable cells; 192 upregulated and 84 downregulated peptides) and low viability after in vitro culture. Protein interaction network analysis based on these 276 protein identified three protein networks that included 18 proteins; most of these proteins were localized to the endoplasmic reticulum and several of them are involved in or are altered during the process of endoplasmic reticulum stress/unfolded protein stress response. To conclude, primary AML cells are heterogeneous with regard to degree of apoptosis in response to cellular stress, and this difference in regulation of apoptosis is associated with differences in the induction of and/or response to the unfolded protein stress response.

Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4754-4761 ◽  
Author(s):  
HJ Sutherland ◽  
A Blair ◽  
RW Zapf

Despite the usual uniform and primitive appearance of cells derived from the leukemic clone in most patients with acute myeloid leukemia (AML), there is considerable heterogeneity among leukemic blasts, particularly with respect to their capacity to proliferate and/or self renew. We have assessed whether these differences in proliferative potential are correlated with the phenotypic changes that characterize normal hematopoiesis, which might suggest an analogous hierarchy of AML progenitors. We have used the ability of primitive AML cells to persist or produce blast colony forming cells (CFU-blast) detected after 2 to 8 weeks in the presence of growth factors in suspension cultures (SC) termed SC-initiating cells (IC), or with stroma in long-term cultures (LTC-IC) as a quantitative assay for a cell that may have primitive characteristics. This SC assay is linear, cell concentration independent, and the frequency of SC-IC by limiting dilution analysis is lower than primary CFU-blast. The average output of CFU-blast after 2 to 8 weeks by individual SC-IC varied between 2 and more than 100 in individual patients. Leukemic blasts were sorted based on their expression of antigens previously found useful to characterize normal progenitor differentiation, and analyzed for the percentage of CFU- blast SC-IC, and leukemic LTC-IC within each fraction. All of these progenitor types were heterogeneous in their expression of CD45RA and CD33, but expressed uniformly low levels of CD15 and differed from normal primitive progenitors in their high expression of HLA-DR. CFU- blast had a significantly higher expression of CD71 and CD38 as compared with SC-IC or leukemic LTC-IC. In patients with CD34+ blasts, the majority of their SC-IC at 4 weeks were CD34+/CD38-; however, patients with CD34- blasts had at least some CD34- progenitors. These results show that while heterogeneity exists between patients, it is possible to physically separate subpopulations of AML cells with different proliferative potentials. It also provides some support for the concept that quantitation of leukemic cells capable of producing CFU-blast for 4 weeks or more in vitro measures a less frequent leukemic progenitor with higher proliferative potential that may be the only relevant cell for maintaining the leukemic clone in vivo.


2005 ◽  
Vol 79 (20) ◽  
pp. 13190-13194 ◽  
Author(s):  
Lucas Chan ◽  
Darren Nesbeth ◽  
Taylor MacKey ◽  
Joanna Galea-Lauri ◽  
Joop Gäken ◽  
...  

ABSTRACT Nonviral producer cell proteins incorporated into retroviral vector surfaces profoundly influence infectivity and in vivo half-life. We report the purification and concentration of lentiviral vectors using these surface proteins as an efficient gene transduction strategy. Biotinylation of these proteins and streptavidin paramagnetic particle concentration enhances titer 400- to 2,500-fold (to 109 CFU/ml for vesicular stomatitis virus G protein and 5 × 108 for amphotropic murine leukemia virus envelope). This method also uses newly introduced membrane proteins (B7.1 and ΔLNGFR) directed to lentiviral surfaces, allowing up to 17,000-fold concentrations. Particle conjugation of lentivirus allows facile manipulation in vitro, resulting in the transduction of 48 to 94% of human acute myeloid leukemia blasts.


2007 ◽  
Vol 35 (2) ◽  
pp. 263-273 ◽  
Author(s):  
Stuart A. Scott ◽  
Ashakumary Lakshimikuttysamma ◽  
David P. Sheridan ◽  
Stephen E. Sanche ◽  
C. Ronald Geyer ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3230-3232 ◽  
Author(s):  
Ira Jakupovic ◽  
Victoria L. Grandage ◽  
David C. Linch ◽  
Asim Khwaja

Abstract The granulocyte-macrophage colony-stimulating factor (GM-CSF) analog E21R binds to the GM-CSF receptor complex with low affinity and acts as a competitive antagonist. In addition, it has been reported to be a potent direct activator of apoptosis in primary human acute myeloid leukemia (AML) cells. We have confirmed the ability of E21R to neutralize the biologic effects of GM-CSF and investigated its activity on primary AML blasts. We find that it failed to induce cell death in blast cells from 23 separate AML cases treated in vitro at concentrations of E21R up to 30 μg/mL. Significant cell death resulted in all cases after incubation with cytosine arabinoside. The lack of effect of E21R on AML blasts was unlikely to be due to an absence of functional GM-CSF receptors because 13 cases demonstrated an increase in cell number with the addition of exogenous GM-CSF. These results do not support the use of E21R for the treatment of AML. (Blood. 2004;103: 3230-3232)


Sign in / Sign up

Export Citation Format

Share Document