scholarly journals Biochemical Responses and Leaf Gas Exchange of Fig (Ficus carica L.) to Water Stress, Short-Term Elevated CO2 Levels and Brassinolide Application

Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 73
Author(s):  
Zulias Mardinata ◽  
Tengku Edy Sabli ◽  
Saripah Ulpah

The identification of the key components in the response to drought stress is fundamental to upgrading drought tolerance of plants. In this study, biochemical responses and leaf gas exchange characteristics of fig (Ficus carica L.) to water stress, short-term elevated CO2 levels and brassinolide application were evaluated. The ‘Improved Brown Turkey’ cultivar of fig was propagated from mature two- to three-year-old plants using cuttings, and transferred into a substrate containing 3:2:1 mixed soil (top soil: organic matters: sand). The experiment was arranged as a nested design with eight replications. To assess changes in leaf gas exchange and biochemical responses, these plants were subjected to two levels of water stress (well-watered and drought-stressed) and grown under ambient CO2 and 800 ppm CO2. Water deficits led to effects on photosynthetic rate, stomatal conductance, transpiration rate, vapour pressure deficit, water use efficiency (WUE), intercellular CO2, and intrinsic WUE, though often with effects only at ambient or elevated CO2. Some changes in content of chlorophyll, proline, starch, protein, malondialdehyde, soluble sugars, and activities of peroxidase and catalase were also noted but were dependent on CO2 level. Overall, fewer differences between well-watered and drought-stressed plants were evident at elevated CO2 than at ambient CO2. Under drought stress, elevated CO2 may have boosted physiological and metabolic activities through improved protein synthesis enabling maintenance of tissue water potential and activities of antioxidant enzymes, which reduced lipid peroxidation.

1970 ◽  
Vol 40 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Bikash C Sarker ◽  
Michihiro Hara

Effects and possible interaction of elevated CO2 and water stress on the stomatal morphology and the pattern of gas exchange in leaves of eggplants (Solanum melongena L. cv. Senryo No. 2) were investigated. Sedlings were grown to maturity in controlled growth chamber using ambient CO2 (365~370 ppm) and elevated CO2 (700 ppm) and at frequent watering as control and watering after every 21 days for simulating periodic water stress and recovery from stress. A complementary acclimatisation of photosynthesis in water stressed eggplants grown under elevated CO2 was evident. Despite decreased stomatal conductance and transpiration rate under elevated CO2 conditions, increased net leaf photosynthesis rate was observed. Stomatal length and width decreased under water stress and increased CO2.Key words: Water stress; Adaptation; Eggplant; Gas exchange; Stomatal density; Transpiration rateDOI: http://dx.doi.org/10.3329/bjb.v40i1.7985 Bangladesh J. Bot. 40(1): 1-8, 2011 (June)


1993 ◽  
Vol 148 (1) ◽  
pp. 21-27 ◽  
Author(s):  
S. D. Golombek ◽  
P. Lüdders

2002 ◽  
Vol 127 (1) ◽  
pp. 38-44 ◽  
Author(s):  
R. Thomas Fernandez ◽  
Robert E. Schutzki ◽  
Kelly J. Prevete

Responses of Magnolia ×soulangiana (Soul.-Bod.) `Jane' (`Jane' saucer magnolia) to consecutive short term pretransplant drought stresses and recovery after transplanting were evaluated beginning October 1997 and June 1998. Plants were subjected to one (mild) or two (moderate) 3-day drought stress periods or a two 3-day and one 4-day (severe) drought stress period, each separated by two rewatering periods over 24 hours. One day after each stress period, plants were transplanted into the field and well watered to monitor recovery from stress. Plant response was determined by measuring whole-plant CO2 assimilation, leaf gas exchange (CO2 assimilation, transpiration, stomatal conductance) and canopy growth throughout stress and recovery periods. Whole-plant and leaf CO2 assimilation were lower for the stressed treatments for most of the measurements taken during stress in the fall and spring. After release from stress and transplanting, leaf CO2 assimilation returned to control levels for mild and moderate fall stresses within 2 to 3 d by the next measurement, while it was over 3 weeks until recovery from the severe stress. There was no difference in leaf gas exchange following release from stress and transplanting during the spring stress. More rapid defoliation occurred for the severe fall-stressed plants compared to the controls after release from stress in the fall. Flower number was reduced in spring for the fall-stressed plants. At termination of the experiment, the growth index was lower for severe fall-stressed plants but there were no differences for other fall stress treatments. There was no increase in growth for control or stressed plants for the spring experiment.


2022 ◽  
Vol 7 (1) ◽  
pp. 37-60
Author(s):  
Yenni ◽  
◽  
Mohd Hafiz Ibrahim ◽  
Rosimah Nulit ◽  
Siti Zaharah Sakimin ◽  
...  

<abstract> <p>Drought stress is one of the challenges that can affect the growth and the quality of strawberry. The study aims to determine the growth, biochemical changes and leaf gas exchange of three strawberry cultivars under drought stress. This study was conducted in a glasshouse at Indonesian Citrus and Subtropical Fruits Research Institute, Indonesia, from July-November 2018. The experiment was arranged in a factorial randomized completely block design (RCBD) with three replications and four water deficit (WD) levels [100% field capacity (FC)/well-watered), 75% of FC (mild WD), 50% of FC (moderate WD), and 25% of FC (severe WD)] for three strawberry cultivars (Earlibrite, California and Sweet Charlie). The results showed that total chlorophyll and anthocyanin contents (p ≤ 0.05) were influenced by the interaction effects of cultivars and water deficit. Whereas other parameters such as plant growth, transpiration rate (<italic>E</italic>), net photosynthesis (<italic>A</italic>), stomatal conductance (<italic>gs</italic>), leaf relative water content (LRWC), flowers and fruits numbers, proline content, length, diameter, weight and total soluble solid (TSS) of fruit were affected by water deficit. <italic>A</italic> had positive significant correlation with plant height (r = 0.808), leaf area (r = 0.777), fruit length (r = 0.906), fruit diameter (r = 0.889) and fruit weight (r = 0.891). Based on the results, cultivars affected LRWC, and also number of flowers and fruits of the strawberry. This study showed that water deficit decreased plant growth, chlorophyll content, leaf gas exchange, leaf relative water content, length, diameter and weight of fruit but enhanced TSS, anthocyanin, MDA, and proline contents. Increased anthocyanin and proline contents are mechanisms for protecting plants against the effects of water stress. California strawberry had the highest numbers of flowers and fruits, and also anthocyanin content. Hence, this cultivar is recommended to be planted under drought stress conditions. Among all water stress treatments, 75% of FC had the best results to optimize water utilization on the strawberry plants.</p> </abstract>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Sign in / Sign up

Export Citation Format

Share Document