scholarly journals A New 4-Oxo-4-Phenylbutanoic Acid Polymorph

Proceedings ◽  
2018 ◽  
Vol 2 (14) ◽  
pp. 1119
Author(s):  
Vyacheslav Grinev ◽  
Elena Linkova ◽  
Elizaveta Krivoshchekova ◽  
Alevtina Yegorova

A new Z = 8, Z′ = 2 polymorph of 4-oxo-4-phenylbutanoic (β-benzoylpropionic) acid, C10H10O3, was obtained. The previously published two polymorphs with CCDC codes VERMAG and VERMAG01 crystallize with Z = 4, Z′ = 1 in monoclinic space groups P21/c [a = 15.071(10), b = 5.435(9), c = 16.058(10), β = 129.57(10)°] and P21/n [a = 12.728(6), b = 5.200(3), c = 14.426(6), β = 111.33(3)°], respectively. Reported herein, polymorph crystallizes in monoclinic space group P21/c and has significant larger cell volume of 1754.51 Å3 [a = 15.2673(6), b = 5.2028(2), c = 22.3063(8), β = 98.0217(7)°]. Structurally, new polymorph differs from two known other slightly (RMSD of about 0.112–0.183 Å). All polymorphs contain dimers of molecules bounded by intermolecular hydrogen bonds leaving carbonyl groups at Position 4 unaffected.

2005 ◽  
Vol 60 (2) ◽  
pp. 164-168 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
G. Eren ◽  
F. Gümüş ◽  
I. Svoboda

2-(3’-Hydroxypropyl)benzimidazolium (Hhpb) hexa- and tetrachloroplatinate (C10H13N2O)2·[PtCl6] 1 and (C10H13N2O)2·[PtCl4] 2 were synthesized and their crystal structures determined. Compound 1 is monoclinic, space group P21/n, a = 8.800(1), b = 14.389(2), c = 10.264(2) Å, β = 98.540(10)°, V = 1285.3(3) Å3, Z = 2 and Dc = 1.959 g cm−3. Compound 2 is triclinic, space group P1̄, a=7.8480(10), b=9.0460(10), c=9.6980(10) Å ,α =65.420(10), β =68.810(10), γ = 76.770(1)°,V =581.26(4) Å3, Z =1 and Dc =1.969 g cm−3. In both compounds, the Pt atoms reside at a centre of inversion. Compounds 1 and 2 are comprised of 2-(3’-hydroxypropyl)benzimidazolium (Hhpb)+: (C10H12N2O)+ and [PtCl6]2− and [PtCl4]2− ions, respectively, linked by intermolecular hydrogen bonds N...Cl [range from 3.428(3) to 3.584(4) Å ], N···O [2.769(5) Å ] and O···Cl [3.338(4) and 3.321(3) Å ] for 1, and N···Cl [3.162(7) Å ], N···O [2.749(8) Å ] and O···Cl [3.289(6) Å ] for 2.


1983 ◽  
Vol 61 (9) ◽  
pp. 2137-2140 ◽  
Author(s):  
Kottayil I. Varughese ◽  
Maria Przybylska ◽  
Kazimir Sestanj ◽  
Francesco Bellini ◽  
Leslie G. Humber

The crystals of C16H14F3NO3S2 belong to the monoclinic space group P21/c with a = 11.577(1), b = 12.404(1), c = 12.366(1) Å, β = 90.01(1)°, and Z = 4. The structure was solved by MULTAN 78. The parameters were refined by block-diagonal least-squares to a final R of 0.047 for 2679 observed reflections. Of particular interest is an intramolecular attractive interaction between the sulfur and oxygen atoms with an [Formula: see text] distance of 2.879(2) Å, in which oxygen appears to act as an electrophile. Intermolecular hydrogen bonds between the hydroxyl and keto groups join the molecules related through a centre of symmetry into dimers.


1996 ◽  
Vol 51 (10) ◽  
pp. 1469-1472 ◽  
Author(s):  
Joachim Pickardt ◽  
Britta Kühn

Crystals of |Zn(cnge)2(SCN)2]-2H2O (1) were obtained by evaporation of an aqueous solution of Z n(SO4)·7H2O , KSCN, and cyanoguanidine. Crystals of Zn(eoge)Br2 (2) were obtained by reaction of ZnBr2 and cyanoguanidine in ethanol/water. Both compounds are monoclinic, space group C2/c, 1: Z = 4, a = 1919.6(7), b = 467.3(2), c = 1838.5(6) pm, β = 112.99(3)°, 2: Z = 8, a = 1799.5(6), b = 878.7(2), c = 1367.2(5) pm, β = 101.52(3)°. In 1 each Zn is bonded to two cyanoguanidine molecules and via the N atoms to two NCS groups. Intermolecular hydrogen bonds lead to chains along the a-axis, and these chains are again connected via hydrogen bonds to the two crystal water molecules. In the course of the formation of 2, the cyanoguanidine reacted with the ethanol to form 1-ethoxyiminomethylguanidine. This ligand forms chelate rings with the Zn atoms, which are tetrahedrally coordinated by the two imino N atoms of the ligand and by two bromine atoms.


2001 ◽  
Vol 56 (9) ◽  
pp. 871-880 ◽  
Author(s):  
Gerhard Müller ◽  
Martin Lutz

Abstract N-Acetyl-L-alanine methylester crystallizes in the orthorhombic space group P212121 with one molecule in the asymmetric unit (a = 7.768(1), b = 9.606(1), c = 10.215(2) Å, Z = 4). The individual molecules are linked into infinite strands by intermolecular hydrogen bonds between the amide hydrogen atom as donor and the acetyl oxygen atom as acceptor. The strands run parallel to the crystallographic b axis. The respective racemate, N-acetyl-DL-alanine methylester, crystallizes in the monoclinic space group P 21/n with three molecules in the asymmetric unit (a = 14.442(3), b = 8.467(2), c = 19.336(5) Å, β = 93.68(1)°, Z = 12). Again, the individual molecules are linked into infinite strands by N-H···O= Cacetyl hydrogen bonds which run along the crystallographic a axis. The individual strands are made up of molecules of opposite chirality in a 2:1 ratio. More specifically, one set of strands consists of molecules in the sequence [D, D, L,]∞ while a second set has the sequence [L, L, D]∞ as imposed by the centrosymmetry o f the space group. Thus, although crystals o f N-acetyl-DL-alanine methylester contain equal amounts of the molecules of opposite chirality, the strand formation through intermolecular hydrogen bonds leads to an incom plete resolution of the racemic mixture of molecules within one strand. The reason for the preference of the observed structure o f N-acetyl-DL-alanine methylester over spontaneous resolution is seen in the optimization of hydrogen bonding within one strand versus the overall crystal packing energy. Some principles of the crystallization of achiral molecules, chiral molecules, and racemates are briefly reviewed, as is the phenomenon of spontaneous resolution.


2007 ◽  
Vol 62 (10) ◽  
pp. 1235-1245 ◽  
Author(s):  
Simone Schnabel ◽  
Caroline Röhr

Stoichiometric hydrates of Li3VO4, the hexahydrate and two polymorphs of the octahydrate, were prepared by evaporation of alkaline aqueous solutions 1 molar in LiOH and 0.5 molar in the metavanadate LiVO3 at r. t. with or without the addition of Lithium sulfide, i. e. at different pH values. Their crystal structures have been determined and refined using single crystal X-ray data; all lithium and hydrogen atom positions were localised and refined without contraints. All three title compounds crystallise in non-centrosymmetric space groups. The water molecules belong to the tetrahedral coordination spheres of the Li cations, i. e. they are embedded as water of coordination exclusively. The tetrahedral orthovanadate(V) anions VO3−4 and the LiO4 tetrahedra are connected via common O corners to form building units which are further held together by strong, nearly linear hydrogen bonds. The hexahydrate Li3VO4 ・ 6H2O (space group R3, a = 962.9(2), c = 869.2(2) pm, Z = 3, R1 = 0.0260) contains isolated orthovanadate(V) anions VO3−4 surrounded by a 3D network of cornersharing Li(H2O)4 tetrahedra forming rings of three, seven and eight units. The water molecules are ‘isolated’ in the sense that no hydrogen bonds are formed between water molecules. The octahydrate is dimorphous: The triclinic polymorph of Li3VO4 ・ 8H2O (space group P1, a = 592.6(2), b = 651.3(2), c = 730.2(4) pm, α = 89.09(2), β = 89.43(2), γ = 88.968(12)°, Z = 1, R1 = 0.0325) contains two types of chains of tetrahedra: One consists of corner-sharing Li(H2O)4 tetrahedra only, the second one is formed by alternating LiO4 and VO4 tetrahedra, also sharing oxygen corners. Only one water molecule is ‘isolated’, the other seven form a branched fragment of a chain with hydrogen bonds between them. In the monoclinic form of Li3VO4・8H2O (space group Pc, a = 732.6(1), b = 653.7(1), c = 1292.9(3) pm, β = 112.21(1)°, Z = 2, R1 = 0.0289) a fragment of a chain of three LiO4 tetrahedra, two of which share a common edge, and one VO4 tetrahedron represent the formular unit. These building blocks are connected via hydrogen bonds formed by three ‘isolated’ water molecules and a chain fragment of five connected water molecules.


1999 ◽  
Vol 55 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Martina Walker ◽  
Ehmke Pohl ◽  
Regine Herbst-Irmer ◽  
Martin Gerlitz ◽  
Jürgen Rohr ◽  
...  

The crystal structures of Emycin E (1), di-o-bromobenzoyl-Emycin F (2) and o-bromobenzoyl-Emycin D (3) have been determined by X-ray analysis at low temperature. Emycin E and o-bromobenzoyl-Emycin D both crystallize with two molecules in a triclinic unit cell. These two structures can be solved and refined either in the centrosymmetric space group P\bar 1, with apparent disorder localized at or around the expected chiral centre, or in the non-centrosymmetric space group P1 as mixtures of two diastereomers without disorder. Only the latter interpretation is consistent with the chemical and spectroscopic evidence. Refinements in the centrosymmetric and non-centrosymmetric space groups are compared in this paper and are shown to favour the chemically correct interpretation, more decisively so in the case of the bromo derivative as a result of the anomalous dispersion of bromine. Structures (1) and (3) provide a dramatic warning of the dangers inherent in the conventional wisdom that if a structure can be refined satisfactorarily in both centrosymmetric and non-centrosymmetric space groups, the former should always be chosen. In these two cases, despite apparently acceptable intensity statistics and R factors (5.87 and 3.55%), the choice of the centrosymmetric space group leads to the serious chemical error that the triclinic unit cell contains a racemate rather than two chiral diastereomers! The weakest reflections are shown to be most sensitive to the correct choice of space group, underlining the importance of refining against all data rather than against intensities greater than a specified threshold. The use of similar-distance restraints is shown to be beneficial in both P1 refinements. Di-o-bromobenzoyl-Emycin F crystallizes in the monoclinic space group P21 with one molecule in the asymmetric unit and so does not give rise to these problems of interpretation. The absolute configuration of the two bromo derivatives, and hence the Emycins in general, was determined unambiguously as S at the chiral centre C3.


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


2014 ◽  
Vol 70 (a1) ◽  
pp. C964-C964
Author(s):  
Lucy Mapp ◽  
Mateusz Pitak ◽  
Simon Coles ◽  
Srinivasulu Aitipamula

The study of multi-component crystals, as well as the phenomenon of polymorphism, both have relevance to crystal engineering. Obtaining a specific polymorph is crucial as different polymorphs usually exhibit different physical and chemical properties and often the origin of this behaviour is unknown. This is especially important in the pharmaceutical industry. Herein, we present results of comparative studies of an analgesic drug, ethenzamide and its co-crystals with saccharin. The co-crystalisation of ethenzamide (2-ethoxybenzamide, EA) with saccharin (1,1-dioxo-,1,2-benzothiazol-3-one, SAC) with a 1:1 stoichiometric ratio resulted in two polymorphic forms of the co-crystal. Form I crystallises in the triclinic P-1 space group, whereas form II crystallises in monoclinic space group P21/n. Previous crystal structure analyses on forms I and II revealed that in both polymorphs the primary carboxy-amide-imide heterosynthon is the same, however the secondary level of interactions which extends the hydrogen bond network is different. Form I consists of extended linear tapes via N-H···O hydrogen bonds, whereas form II is composed of stacks of tetrameric motifs including N-H···O hydrogen bonds and C-H···O interactions. These two forms of EA-SAC can be classified as synthon polymorphs at a secondary level of hydrogen bonding [1]. In our approach an accurate, high resolution charge density distribution analysis has been carried out to obtain greater insight into the electronic structures of both types of the EA-SAC co-crystals and relate differences in electronic distribution with their polymorphic behaviour. To describe the nature and role of inter and intra-molecular interactions in a quantitative manner, the Hansen-Coppens formalism [2] and Bader's AIM theory [3] approach have been applied.


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


2006 ◽  
Vol 62 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Christopher Glidewell ◽  
John N. Low ◽  
Janet M. S. Skakle ◽  
James L. Wardell

The structures of five of the possible six isomers of (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadiene are reported, including two polymorphs of one of the isomers. (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene, C14H10N4O4 (I), crystallizes in two polymorphic forms (Ia) and (Ib) in which the molecules lie across centres of inversion in space groups P21/n and P21/c, respectively: the molecules in (Ia) and (Ib) are linked into chains by aromatic π...π stacking interactions and C—H...π(arene) hydrogen bonds, respectively. Molecules of (E,E)-1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene (II) are linked into sheets by two independent C—H...O hydrogen bonds. The molecules of (E,E)-1,4-bis(3-nitrophenyl)-2,3-diaza-1,3-butadiene (III) lie across inversion centres in the space group P21/n, and a combination of a C—H...O hydrogen bond and a π...π stacking interaction links the molecules into sheets. A total of four independent C—H...O hydrogen bonds link the molecules of (E,E)-1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene (IV) into sheets. In (E,E)-1,4-bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene (V) the molecules, which lie across centres of inversion in the space group P21/n, are linked by just two independent C—H...O hydrogen bonds into a three-dimensional framework.


Sign in / Sign up

Export Citation Format

Share Document