scholarly journals Assessment of Groundwater Quality in CKDu Affected Areas of Sri Lanka: Implications for Drinking Water Treatment

Author(s):  
Titus Cooray ◽  
Yuansong Wei ◽  
Hui Zhong ◽  
Libing Zheng ◽  
Sujithra K. Weragoda ◽  
...  

This study investigated the water quality of the groundwater that was collected from the chronic kidney disease of unknown etiology (CKDu) prevailing areas in the dry zone of Sri Lanka to assess its suitability for drinking purposes, and for the first time a Water Quality Index (WQI) with emphasis on proposing appropriate drinking water treatment method was developed. A total of 88 groundwater samples were collected in dry (December 2016) and wet (May 2017) seasons; high concentrations of water hardness, fluoride, salinity, dissolved organic carbon (DOC), and the general alkaline nature of water were the main issues that were observed for disease incidence. The chemical weathering of the underlying bedrock, followed by ion exchange and precipitation processes, primarily controlled groundwater geochemistry. During the 1985–2017 period, the variations of the annual rainfall and temperature were minimal, which suggests no evidence for major climatic changes within the study areas. Almost all of the samples from the CKDu regions show a low alkali hazard and most of the samples show a medium to high salinity hazard. The DOC of the studied samples was mainly composed of the organic fractions in the following order, as fulvic acids > humic acids > aromatic protein II > soluble microbial by-products, and the molecular weights (MW) of these fractions ranged from 100–3000 Da. Based on the water quality index (WQI) calculations, it was found that only 3.8% in the wet season and 2.6% in the dry season of total water samples were categorized as the “excellent” type, and all other water sources require a further treatment before consumption. As there is an urgent need for establishing proper long-term drinking water treatment technology for the CKDu affected area, these findings can be used as benchmark of raw water quality in the design processes of treatment plants.

2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters


2020 ◽  
Author(s):  
Andre van den Doel ◽  
Geert H van Kollenburg ◽  
Thomas D.N. van Remmen ◽  
Joanne A de Jonge ◽  
Gerard J Stroomberg ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


2020 ◽  
Vol 705 ◽  
pp. 135779 ◽  
Author(s):  
Andrea M. Brunner ◽  
Cheryl Bertelkamp ◽  
Milou M.L. Dingemans ◽  
Annemieke Kolkman ◽  
Bas Wols ◽  
...  

2019 ◽  
Vol 5 (8) ◽  
pp. 1360-1370 ◽  
Author(s):  
Bofu Li ◽  
Benjamin F. Trueman ◽  
Mohammad Shahedur Rahman ◽  
Yaohuan Gao ◽  
Yuri Park ◽  
...  

Silicates represent an alternative drinking water treatment for colour and turbidity due to iron. They may avoid the drawbacks of polyphosphates: increased lead solubility, the potential for increased bacterial growth, and phosphorus in wastewater.


2020 ◽  
Vol 20 (6) ◽  
pp. 2106-2118
Author(s):  
Kassim Chabi ◽  
Jie Zeng ◽  
Lizheng Guo ◽  
Xi Li ◽  
Chengsong Ye ◽  
...  

Abstract People in remote areas are still drinking surface water that may contain certain pollutants including harmful microorganisms and chemical compounds directly without any pretreatment. In this study, we have designed and operated a pilot-scale drinking water treatment unit as part of our aim to find an economic and easily operable technology for providing drinking water to people in those areas. Our small-scale treatment unit contains filtration and disinfection (UV–C irradiation) stages to remove pollutants from source water. The water quality index was determined based on various parameters such as pH, temperature, dissolved oxygen, nitrate, nitrite, ammonium, phosphorus, dissolved organic carbon and bacteria. Water and media samples after DNA extraction were sequenced using Illumina MiSeq throughput sequencing for the determination of bacterial community composition. After the raw water treatment, the reduction of bacteria concentration ranged from 1 to 2 log10. The average removal of the turbidity, ammonium, nitrite, phosphorus and dissolved organic carbon reached up to 95.33%, 85.71%, 100%, 28.57%, and 45%, respectively. In conclusion, multiple biological stages in our designed unit showed an improvement of the drinking water quality. The designed drinking treatment unit produces potable water meeting standards at a lower cost of operation and it can be used in remote areas.


2015 ◽  
Vol 50 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Abdulrasoul Al-Omran ◽  
Fahad Al-Barakah ◽  
Abdullah Altuquq ◽  
Anwar Aly ◽  
Mahmoud Nadeem

One hundred and eighty drinking water samples were collected from five zones of Riyadh governorate including Riyadh main zone, Ulia, Nassim, Shifa, and Badiah zones. The water was collected from the main water network and underground and upper household tanks in each zone. The water quality was found to be acceptable for drinking with respect to chemical characteristics; however, analyses exhibited some microbial contamination. The water quality index (WQI) is a mathematical method used to facilitate water quality explanation. The WQI was calculated using several physico-chemical and microbial parameters. The results showed that more than 88% of Riyadh main zone, 91% of Ulia, 97% of Nassim, 88% of Shifa, and 100% of Badiah waters zones were considered excellent for drinking (class I). The remaining waters were considered unsuitable for drinking (class V) due to microbial contamination.


Sign in / Sign up

Export Citation Format

Share Document