scholarly journals Antifungal Properties of Two Volatile Organic Compounds on Barley Pathogens and Introduction to Their Mechanism of Action

Author(s):  
Amine Kaddes ◽  
Marie-Laure Fauconnier ◽  
Khaled Sassi ◽  
Bouzid Nasraoui ◽  
M. Haïssam Jijakli

This study evaluated the antifungal effects of various volatile organic compounds (VOCs) against two common pathogens: Fusarium culmorum and Cochliobolus sativus. Among the various VOCs, methyl propanoate (MP) and methyl prop-2-enoate (MA) exhibited remarkable antifungal effects under different experimental conditions (direct or indirect contact) and at different concentrations (500–1000 μM). In addition, the type of antifungal effect (fungistatic or fungicidal) appeared to be strongly correlated with the VOC concentrations. Additional tests revealed that both molecules increased membrane permeability of pathogenic spores, which resulted in a decreased efflux of K+ ions into the intracellular medium.

2020 ◽  
Vol 51 (3) ◽  
pp. 861-873 ◽  
Author(s):  
Edgar Guevara-Avendaño ◽  
Karla R. Bravo-Castillo ◽  
Juan L. Monribot-Villanueva ◽  
Ana L. Kiel-Martínez ◽  
Mónica Ramírez-Vázquez ◽  
...  

2021 ◽  
Vol 21 (14) ◽  
pp. 11201-11224
Author(s):  
Benjamin A. Nault ◽  
Duseong S. Jo ◽  
Brian C. McDonald ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
...  

Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in populated areas around the world and contributes to poor air quality and premature mortality. However, the precursor sources of ASOA are poorly understood, and there are large uncertainties in the health benefits that might accrue from reducing anthropogenic organic emissions. We show that the production of ASOA in 11 urban areas on three continents is strongly correlated with the reactivity of specific anthropogenic volatile organic compounds. The differences in ASOA production across different cities can be explained by differences in the emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the importance of controlling these ASOA precursors. With an improved model representation of ASOA driven by the observations, we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a more recently proposed model for attributing mortality to PM2.5 (the Global Exposure Mortality Model) results in up to 900 000 deaths. A limitation of this study is the extrapolation from cities with detailed studies and regions where detailed emission inventories are available to other regions where uncertainties in emissions are larger. In addition to further development of institutional air quality management infrastructure, comprehensive air quality campaigns in the countries in South and Central America, Africa, South Asia, and the Middle East are needed for further progress in this area.


2005 ◽  
Vol 5 (4) ◽  
pp. 4801-4843 ◽  
Author(s):  
P. A. Cleary ◽  
J. G. Murphy ◽  
P. J. Wooldridge ◽  
D. A. Day ◽  
D. B. Millet ◽  
...  

Abstract. During the summer of 2001, NO2, total peroxy nitrates (ΣPNs), total alkyl nitrates (ΣANs), HNO3, volatile organic compounds (VOC), CO2, O3, and meteorological variables were measured at Granite Bay, CA. The diurnal variation in ΣPNs, ΣANs and HNO3 were all strongly correlated with sunlight, indicating both that they are photochemically produced and that they have a lifetime of a few hours at this site. The mixing ratios of ΣANs ranged as high as 2 ppbv. Mixing ratios at night averaged 0.4 ppbv. Odd-oxygen (Ox=O3+NO2) and ΣANs were strongly correlated reflecting both the common chemical source terms and the similar lifetimes of both species. Several approaches to interpreting the simultaneous variations of Ox and ΣANs are described, and used to derive a best estimate of the ΣAN yield from the VOC mixture at this site of 4.2% and an estimate of the range that is consistent with the observations of 3.9–5.8%. A yield of 4.2% implies termination of the HOx catalytic cycle by ΣAN formation once every 24 cycles. Analysis of the HNO3 observations in combination with the ΣAN and O3 measurements suggests that NOx terminations limit the HOx chain length to between 4.7 and 6.3.


2020 ◽  
Author(s):  
Benjamin A. Nault ◽  
Duseong S. Jo ◽  
Brian C. McDonald ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
...  

Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenic emissions of organic compounds, constitutes a substantial fraction of the mass of submicron aerosol in populated areas around the world and contributes to poor air quality and premature mortality. However, the precursor sources of ASOA are poorly understood, and there are large uncertainties in the health benefits that might accrue from reducing anthropogenic organic emissions. We show that the production of ASOA in 11 urban areas on three continents is strongly correlated with the anthropogenic reactivity of specific volatile organic compounds. The differences in ASOA production across different cities can be explained by differences in the emissions of aromatics and intermediate- and semi-volatile organic compounds, indicating the importance of controlling these ASOA precursors. With an improved modeling representation of ASOA driven by the observations, we attribute 340,000 PM2.5 premature deaths per year to ASOA, which is over an order of magnitude higher than prior studies. A sensitivity case with a more recently proposed model for attributing mortality to PM2.5 (the Global Exposure Mortality Model) results up to 900,000 deaths. A limitation of this study is the extrapolation from regions with detailed data to others where data is not available. Comprehensive air quality campaigns in the countries in South and Central America, Africa, South Asia, and the Middle East are needed for further progress in this area.


2017 ◽  
Vol 64 ◽  
pp. 219-225 ◽  
Author(s):  
A. Gotor-Vila ◽  
N. Teixidó ◽  
A. Di Francesco ◽  
J. Usall ◽  
L. Ugolini ◽  
...  

2017 ◽  
Author(s):  
Luís Miguel Feijó Barreira ◽  
Geoffroy Duporté ◽  
Tuukka Rönkkö ◽  
Jevgeni Parshintsev ◽  
Kari Hartonen ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) emitted by terrestrial vegetation participate in a diversity of natural processes. These compounds impact both on short-range processes, such as on plant protection and communication, and on high-range processes, by e.g. participation on aerosol particle formation and growth. The biodiversity of plant species around the Earth, the vast assortment of emitted BVOCs, and their trace atmospheric concentrations contribute to the high remaining uncertainties about the effects of these compounds on atmospheric chemistry and physics, and call for the development of novel collection devices that can offer portability with improved selectivity and capacity. In this study, a novel solid-phase microextraction (SPME) Arrow sampling system was used for the static and dynamic collection of BVOCs from the boreal forest, and samples were subsequently analysed on-site by gas chromatography-mass spectrometry (GC-MS). This system offers higher sampling capacity and improved robustness than the traditional equilibrium-based SPME techniques, such as SPME fibers. Field measurements were performed in summer 2017 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. Complementary laboratory tests were also performed to compare the SPME-based techniques under controlled experimental conditions and to evaluate the effect of temperature and relative humidity on their extraction performance. The most abundant monoterpenes and aldehydes were successfully collected. A significant improvement on sampling capacity was observed with the new SPME Arrow system when compared to SPME fibers, with collected amounts being approximately 2 times higher for monoterpenes and 7–8 times higher for aldehydes. BVOC species exhibited different affinities for the type of sorbent materials used (PDMS/Carbon WR vs. PDMS/DVB). Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime, but this benefit during the field measurements was small probably due to the natural agitation provided by the wind. An increase in temperature and relative humidity caused a decrease in the amounts of analytes extracted under controlled experimental conditions, even though the effect was more significant for PDMS/Carbon WR than for PDMS/DVB. Overall, results demonstrated the benefits and challenges of using SPME Arrow for the sampling of BVOCs in the atmosphere.


2019 ◽  
Vol 30 (2) ◽  
pp. 118-124
Author(s):  
E. G. Tyulkova ◽  
L. P. Avdashkova

One of the criteria for plant adaptation to the volatile organic compounds action can be the lipid peroxidation intensity processes as a result of destructive oxidative processes ratio and the plants activity antioxidant protection. In this regard, the aim of the study was a comparative study of volatile various doses organic compounds effect (o-xylol, benz(a)pyrene, butyl acetate) on the content of malondialdehyde (MDA) in woody plants seedlings under specified experimental conditions. The results of an experiment on processing leaf blades of urban environments woody plants seedlings with volatile hydrocarbons and their mixture indicate that the effect of o-xylol, butyl acetate and a mixture of butyl acetate and o-xylol on the malonic dialdehyde content in drooping birch Betula pendula Roth. during the first days after exposure, it was manifested in the accumulation of lipid peroxidation products, whereas after three days of the experiment, the plant response in this case was expressed as a decrease in the content of MDA and the intensity of the lipid peroxidation process. Benz(a)pyrene in drooping birch caused a higher content of MDA three days after treatment. In the pyramidal poplar, the character of o-xylol influence and a butyl acetate and o-xylol mixture over the experiment course was similar to the drooping birch and was expressed in the lipid peroxidation products accumulation one day after treatment. Benz(a)pyrene was the cause of the increased malondialdehyde content one day after treatment, butyl acetate – after three days of the experiment. The combined processing of birch seedlings leaf blades with a butyl acetate and o-xylol mixture made it possible for these compounds to enhance each other's toxic effect compared to their action alone, with the exception of o-xylol three days after treatment with the mixture in the maximum dose. In pyramidal poplar, unlike birch, suspended butyl acetate in the mixture weakened the o-xylol toxic effect in comparison with its effect in the form of a single solution, and o-xylol weakened the effect of butyl acetate. In general, in the studied wood seedlings, the most potent compounds one cluster in the processes of membrane lipid peroxidation compared with the control can include benz(a)pyrene (in birch), butyl acetate and a mixture of butyl acetate and o-xylol (at the poplar pyramidal).


Sign in / Sign up

Export Citation Format

Share Document