scholarly journals Non-Point Source Pollution Simulation and Best Management Practices Analysis Based on Control Units in Northern China

Author(s):  
Yang Ding ◽  
Fei Dong ◽  
Jinyong Zhao ◽  
Wenqi Peng ◽  
Quchang Chen ◽  
...  

Non-point source (NPS) pollution simulation in control units can identify critical pollution source areas and make Best Management Practices (BMPs) more effective for the responsible parties. In this study, the control unit division method is introduced, and the spatial and temporal distribution characteristics of NPS pollution in the Guishui River Basin of Northern China are analyzed using the Soil Water Assessment Tool (SWAT) model. In addition, five BMP scenarios were designed for environmental and cost-benefit analyses. The results show that the loss of total nitrogen (TN) and total phosphorus (TP) is concentrated in the rainy season, and the loss of TN and TP is mainly distributed in the middle and lower reaches of the main stream of the Guishui River. This area accounts for 22.34% of the basin area. The vegetated filter strips (VFS) scenario had the best environmental benefits with average TN and TP reduction efficiencies of 63.4% and 62.6%, respectively. The Grassed Waterway was the most cost-effective scenario measure, cost-benefit (CE) values of TN and TP were 1798.13 g/€ and 601.56 g/€. Generally, research on NPS pollution using control units can more clearly identify the critical source areas of pollution than other methods, and provides technical support for watershed management decision makers.

Author(s):  
Shu Li ◽  
Jiake Li ◽  
Gairui Hao ◽  
Yajiao Li

Abstract Taking the Hanjiang River basin with Ankang hydrological station as the control section as the study area, the Soil and Water Assessment Tool (SWAT) model is used to identify the spatial and temporal distribution of non-point source (NPS) pollution and determine the critical source areas (CSA). Then we set up 11 best management practices (BMPs) in the CSA and evaluate their environmental and comprehensive benefits. The results show that TN and TP loads in flood season are significantly higher than that in non-flood season. The distribution of loss intensity of TN and TP load has a strong correlation with runoff and sediment erosion intensity, respectively. Among the 8 individual BMPs, the reduction rates of stubble coverage, grassed waterway and returning farmland to forest land are relatively high, and the comprehensive attribute value Z of stubble coverage is the highest. Among the 3 combined BMPs, the reduction rate of ‘stubble coverage + grassed waterway + returning farmland to forest land (>25°)’ is the highest and the Z value is the largest. Overall, the BMPs such as stubble coverage, grassed waterway, and returning farmland to forest land can be adopted alternately to control NPS pollution in the Hanjiang river basin.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 468 ◽  
Author(s):  
Ramesh P. Rudra ◽  
Balew A. Mekonnen ◽  
Rituraj Shukla ◽  
Narayan Kumar Shrestha ◽  
Pradeep K. Goel ◽  
...  

Non-point source (NPS) pollution is an important problem that has been threatening freshwater resources throughout the world. Best Management Practices (BMPs) can reduce NPS pollution delivery to receiving waters. For economic reasons, BMPs should be placed at critical source areas (CSAs), which are the areas contributing most of the NPS pollution. The CSAs are the areas in a watershed where source coincides with transport factors, such as runoff, erosion, subsurface flow, and channel processes. Methods ranging from simple index-based to detailed hydrologic and water quality (HWQ) models are being used to identify CSAs. However, application of these methods for Canadian watersheds remains challenging due to the diversified hydrological conditions, which are not fully incorporated into most existing methods. The aim of this work is to review potential methods and challenges in identifying CSAs under Canadian conditions. As such, this study: (a) reviews different methods for identifying CSAs; (b) discusses challenges and the current state of CSA identification; and (c) highlights future research directions to address limitations of currently available methods. It appears that applications of both simple index-based methods and detailed HWQ models to determine CSAs are limited in Canadian conditions. As no single method/model is perfect, it is recommended to develop a ‘Toolbox’ that can host a variety of methods to identify CSAs so as to allow flexibility to the end users on the choice of the methods.


2011 ◽  
Vol 347-353 ◽  
pp. 2195-2199 ◽  
Author(s):  
Jian Ma ◽  
Xin Chen ◽  
Yi Shi

Agricultural non-point source (NPS) pollution is a growing environmental problem, contributing much to water eutrophication in China as well as in other parts of the world. NPS pollutants are heterogeneously distributed and discharged from agricultural lands and other sources, and extremely hard to control by technical measures. Hence, control of the water quality problems caused by agricultural NPS pollution becomes difficult if recommended best management practices (BMPs) can’t be well implemented. In this paper, current research progress related to distinguishing agricultural NPS pollution sources was reviewed. Three pivotal methods for identifying agricultural NPS pollution sources were introduced and the advantages and disadvantages of each approach were discussed. Finally suggestions were presented on better identifying agricultural NPS pollution sources in China.


2005 ◽  
Vol 29 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Amanda L. Husak ◽  
Stephen C. Grado ◽  
Steven H. Bullard ◽  
Steverson O. Moffat

Abstract Passage of the Clean Water Act (CWA) of 1972 prompted states to invest significant resources to develop programs to control nonpoint source (NPS) pollution from forestry and other activities. Forestry-related agencies and organizations have since developed silvicultural best managementpractice (BMP) guidelines to reduce NPS pollution, maintain stream integrity, and meet state water quality standards. To determine the effectiveness and implementation level of best management practices (BMP) on public and private forestland, states further developed and implemented theirBMP compliance monitoring programs. This study documents the similarities and differences in efforts, methods, resources, and expenditures among BMP compliance monitoring programs across the 13 southern states. 29(1):48–52.


2019 ◽  
Vol 19 (12) ◽  
pp. 2767-2779 ◽  
Author(s):  
Gyumin Lee ◽  
Kyung Soo Jun ◽  
Minji Kang

Abstract. This study aimed to develop a risk-based approach for determining control areas to manage non-point source pollution, developing a framework to prioritize catchments by considering the characteristics of polluted runoff from non-point sources. The best management, decision-making, and scientific approaches, such as the technique for order of preference by similarity to ideal solution (TOPSIS) and the Delphi technique, are required for the designation of control areas and the application of the best management practices to the control areas. Multi-criteria decision-making (MCDM) methods can handle the diversity and complexity of non-point source pollution. The Delphi technique was employed for selecting the assessment criteria/sub-criteria and determining their weights. Sub-criteria for each catchment unit were scored with either a quantitative or qualitative scale. All non-point pollution sources in mainland Republic of Korea were included, with the exception of a few islands, with catchment prioritization and pollution vulnerability evaluations shown as thematic maps. This study contributes to the field by developing a new risk-based approach for ranking and prioritizing catchments; this provides valuable information for the Ministry of Environment to use to identify control areas and manage non-point source pollution.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 241-259 ◽  
Author(s):  
R. T. Bannerman ◽  
D. W. Owens ◽  
R. B. Dodds ◽  
N. J. Hornewer

Rainfall runoff samples were collected from streets, parking lots, roofs, driveways, and lawns. These five source areas are located in residential, commercial, and industrial land uses in Madison, Wisconsin. Solids, phosphorus, and heavy metals loads were determined for all the source areas using measured concentrations and runoff volumes estimated by the Source Load and Management Model. Source areas with relatively large contaminant loads were identified as critical source areas for each land use. Streets are critical source areas for most contaminants in all the land uses. Parking lots are critical in the commercial and industrial land uses. Lawns and driveways contribute large phosphorus loads in the residential land use. Roofs produce significant zinc loads in the commercial and industrial land uses. Identification of critical source areas could reduce the amount of area needing best-management practices in two areas of Madison, Wisconsin. Targeting best-management practices to 14% of the residential area and 40% of the industrial area could significantly reduce contaminant loads by up to 75%.


Sign in / Sign up

Export Citation Format

Share Document