scholarly journals Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals

Author(s):  
Masato Honda ◽  
Nobuo Suzuki

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that are widely distributed in the air, water, and soil. Recently, the amount of PAHs derived from fuels and from incomplete combustion processes is increasing. In the aquatic environment, oil spills directly cause PAH pollution and affect marine organisms. Oil spills correlate very well with the major shipping routes. Furthermore, accidental oil spills can seriously impact the marine environment toxicologically. Here, we describe PAH toxicities and related bioaccumulation properties in aquatic animals, including invertebrates. Recent studies have revealed the toxicity of PAHs, including endocrine disruption and tissue-specific toxicity, although researchers have mainly focused on the carcinogenic toxicity of PAHs. We summarize the toxicity of PAHs regarding these aspects. Additionally, the bioaccumulation properties of PAHs for organisms, including invertebrates, are important factors when considering PAH toxicity. In this review, we describe the bioaccumulation properties of PAHs in aquatic animals. Recently, microplastics have been the most concerning environmental problem in the aquatic ecosystem, and the vector effect of microplastics for lipophilic compounds is an emerging environmental issue. Here, we describe the correlation between PAHs and microplastics. Thus, we concluded that PAHs have a toxicity for aquatic animals, indicating that we should emphasize the prevention of aquatic PAH pollution.

2021 ◽  
Vol 19 (3) ◽  
pp. 246-254
Author(s):  
Nur Zaida Zahari ◽  
◽  
Erma Hani Baharudzaman ◽  
Piakong Mohd Tuah ◽  
Fera Nony Cleophas ◽  
...  

Oil spills are one of the environmental pollutions that commonly occur along coastal areas. Tar-balls are one of the products that come from the oil spill pollution. In this study, tar-ball pollution was monitored at 10 points along the coastline of Marintaman Beach in Sipitang, Sabah, Malaysia. This research determined the physical characteristics, composition, and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in tar-balls. The total number of tar-balls collected was 227 (n=227). The tar-balls were observed in various shapes and the sizes were recorded in the range of 0.1 cm to 6.9 cm. The composition and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in the outer and inner layer of tar-balls were determined. The results showed that the main Polycyclic Aromatic Hydrocarbons (PAHs) compounds were found in inner layers of the tar-balls with benzo (g,h,i) perylene (72.26 mg/kg), flourene (59.87 mg/kg), dibenzo (a,h) anthracene (44.48 mg/kg), indeno (1,2,3-c,d) pyrene (78.18 mg/kg), and benzo (e) fluoranthene (45.70 mg/kg), respectively. Further research was done with the bioaugmentation study of locally isolated beneficial microorganisms (LIBeM) consortium for treatment of tar-balls in an Aerated Static Pile (ASP) bioreactor system. The results showed that, after 84 days of treatment, this consortium, consisting of C. tropicalis-RETL-Cr1, C. violaceum-MAB-Cr1, and P. aeruginosa-BAS-Cr1, was able to degrade total petroleum hydrocarbon (TPH) by 84% as compared to natural attenuation (19%). The microbial population of this consortium during the biodegradation study is also discussed in this paper.


2018 ◽  
Vol 20 (3) ◽  
pp. 465-470

<p>In this study, the potential use of Azolla filiculoides Lam. for the bioremediative solution to polycyclic aromatic hydrocarbon (PAH) pollution due to crude oil spills in freshwater was investigated. The plants were grown in nitrogen-free Hoagland nutrient solution media containing 0.05%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5% crude oil by volume for 15 days under greenhouse conditions. Relative growth rates of A. filiculoides decreased in the presence of crude oil in a concentration-dependent manner. The probable influence of A. filiculoides on the biodegradation of polycyclic aromatic hydrocarbons was measured by using synchronous UV fluorescence spectroscopy. GC-MS analysis were also carried out to elucidate the behavior of the oil in experimental and control samples. Although 1-2 rings PAHs have not been encountered in control or plant samples, the measured intensity for 3-4 ring PAHs in plant samples was remarkably lower in comparison to the control. Furthermore, these results demonstrated that the predominant efficacy of the A. filiculoides was for 3-4 ring PAHs at the range 0.05 to 0.2% crude oil concentrations. It could be concluded that the bioremediative potential of A. filiculoides for the removal of polycyclic aromatic hydrocarbons strongly depends on the amount of oil in the contaminated water resource. In other words, A. filiculoides could be used more effectively after the removal of excess crude oil in the spilled freshwater areas.</p>


Author(s):  
Christopher Onyemaechi Ezike ◽  
Felix Okaliwe Echor

One hundred and twenty (120) fingerlings of Clarias gariepinus (mean weight: 0.96 &plusmn; 0.1g) were randomly exposed to 4 experimental treatments of petroleum, based on LC50 values (6.4mg/L of crude oil, 8.7mg/L of petrol, 8.0mg/L of kerosene and 7.8mg/L of diesel oil) and replicated thrice, to determine polycyclic aromatic hydrocarbons (PAH) in exposed fish for 96 h. There was no significant difference (P &gt; 0.05) in total (PAHs) between crude oil (97.1 ng/uL) and diesel (97.2 ng/uL) exposed fish and also between petrol (53.2 ng/uL) and kerosene (49.6 ng/uL) exposed fish, but there was a significant difference (P &lt; 0.05) in PAH levels of the crude oil/diesel exposed -groups of fish compared to petrol/kerosene exposed -groups of fish (97.1/97.2 and 53.2/49.6 ng/uL). Naphthalene correlated positively to benzo a anthracene (r=0.672, (P &lt; 0.05), benzo b fluoranthene (r=0.681, P &lt; 0.05) and chrysene (r=0.615, P &lt; 0.05) but did not correlate to fluorene. Benzo a anthracene correlated positively to benzo a pyrene (r=0.578, P &lt; 0.05), phenathrene (r=0.685, P &lt; 0.05) but did not correlate to acenaphthene. Fluorene correlated positively to benzo a pyrene (r=0.695, P &lt; 0.05) but did not correlate to chrysene. Chrysene correlated positively to dibenzo a,h, pyrene (r=0.658, P &lt; 0.05) to phenathrene and benzo b fluoranthene (r=0.659, P&lt; 0.05). Indeno 123 cd- pyrene and fluranthene however did not correlate to other PAHs except naphthanene, acenaphthene and acenaphthylene. The level of PAH in fish may translate to the toxicity effect since crude oil and diesel with lower LC50 (6.4 and 7.8 mg/L)&nbsp;&nbsp; deposited greater PAH than kerosene and petrol with higher LC50 (8.7 and 8.0 mg/L) in fingerlings of C. gariepinus. High risk to cancer disorders may occur in exposed fish to petroleum with high incidence of fluorene , anthracene, pyrene and benz a anthracene which correlated positively to benzo a pyrene which provide some basis for predicting impact of oil spills on fingerling population.


2011 ◽  
Vol 15 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Jelena Radonic ◽  
Dubravko Culibrk ◽  
Mirjana Vojinovic-Miloradov ◽  
Branislav Kukic ◽  
Maja Turk-Sekulic

During the thermal combustion processes of carbon-enriched organic compounds, emission of polycyclic aromatic hydrocarbons into ambient air occurs. Previous studies of atmospheric distribution of polycyclic aromatic hydrocarbons showed low correlation between the experimental values and Junge-Pankow theoretical adsorption model, suggesting that other approaches should be used to describe the partitioning phenomena. The paper evaluates the applicability of multivariate piece-wise-linear M5? model-tree models to the problem of gas-particle partitioning. Experimental values of particle-associated fraction, obtained for 129 ambient air samples collected at 24 background, urban and industrial sites, were compared to the prediction results obtained using M5? and the Junge-Pankow model. The M5? approach proposed and models learned are able to achieve good correlation (correlation coefficient >0.9) for some low-molecular-weight compounds, when the target is to predict the concentration of gas phase based on the particle-associated phase. When converted to particle-bound fraction values, the results, for selected compounds, are superior to those obtained by Junge-Pankow model by several orders of magnitude, in terms of the prediction error.


2012 ◽  
Vol 16 (2) ◽  
pp. 551-560 ◽  
Author(s):  
Jelena Radonic ◽  
Dubravko Culibrk ◽  
Mirjana Vojinovic-Miloradov ◽  
Branislav Kukic ◽  
Maja Turk-Sekulic

During the thermal combustion processes of carbon-enriched organic compounds, emission of polycyclic aromatic hydrocarbons into ambient air occurs. Previous studies of atmospheric distribution of polycyclic aromatic hydrocarbons showed low correlation between the experimental values and Junge-Pankow theoretical adsorption model, suggesting that other approaches should be used to describe the partitioning phenomena. The paper evaluates the applicability of multivariate piece-wise-linear M5' model-tree models to the problem of gas-particle partitioning. Experimental values of particle-associated fraction, obtained for 129 ambient air samples collected at 24 background, urban, and industrial sites, were compared to the prediction results obtained using M5' and the Junge-Pankow model. The M5' approach proposed and models learned are able to achieve good correlation (correlation coefficient >0.9) for some low-molecular-weight compounds, when the target is to predict the concentration of gas phase based on the particle-associated phase. When converted to particle-bound fraction values, the results, for selected compounds, are superior to those obtained by Junge-Pankow model by several orders of magnitude, in terms of the prediction error. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/TSCI121205224E">10.2298/TSCI121205224E</a><u></b></font>


Sign in / Sign up

Export Citation Format

Share Document