scholarly journals Human Health Risk Assessment and Potentially Harmful Element Contents in the Cereals Cultivated on Agricultural Soils

Author(s):  
Agnieszka Gruszecka-Kosowska

Potentially harmful element (PHE) contents were investigated in six species of cereals in southern Poland, with human health risk implications assessed afterwards. The PHE contents belonged to the following ranges (mg/kg wet weight): As below the limit of detection (<LOD)–0.013, Cd <LOD–0.291, Co <LOD–0.012, Cu 0.002–11.0, Hg <LOD–0.080, Ni <LOD–8.40, Pb <LOD–12.0, Sb <LOD–0.430, Tl <LOD–0.160, and Zn 5.47–67.7. The Pb and Cd contents exceeded the maximum allowable concentration (MAC) values for wheat, oat, rye, and barley in the Śląskie region. The bioaccumulation coefficient (BA) for the total PHE content in the soil indicated that cereals had no potential of PHE accumulation. Regarding the statistical daily consumption of cereals, the PHE intake rates, expressed as a percentage of permissible maximum total daily intake (% PMTDI), were the following: As 0.0003, Cd 0.193, Co 0.0003, Cu 0.075, Hg 0.424, Ni 3.94, Pb 3.16, Sb 0.23, Tl 0.27, and Zn 0.44. The total non-carcinogenic risk values (HQ) exceeded the target risk value of 1 for wheat (HQ = 13.3) and rye (HQ = 3.44). For other cereals, the total non-carcinogenic risk values decreased in the following order: barley (HQ = 0.47) > oat (HQ = 0.38) > maize (HQ = 0.02). The total non-carcinogenic risk value of the statistical daily consumption of cereals was acceptable low (HQ = 0.58). The acceptable cancer risk (CR) level of 1.0 × 10−5 investigated only for As was not exceeded under any of the intake scenarios. Concerning the mean As content in cereals consumed daily in statistical amounts the CR value was equal to 5.1 × 10−8. The health risk value according to the Pb content in cereals using the margin of exposure (MOE) approach was equal to 1.27, indicating an acceptable low risk.

2018 ◽  
Vol 29 (1) ◽  
pp. 8-24 ◽  
Author(s):  
Uchechi Bliss Onyedikachi ◽  
Donatus Chuka Belonwu ◽  
Mattew Owhonda Wegwu

Abstract In view of ensuring healthy agricultural foods for human consumption, this study assessed the human health risk implicated in selected heavy metals in some commonly consumed vegetables, tubers, nuts and fruits grown around the quarry sites at Ishiagu, Ebonyi State, Nigeria. Samples from agriculture area of Umudike, Abia State, Nigeria, constituted the control. The concentration of Mn, Zn, Fe, Cu, Cd, and Pb, were determined using atomic absorption spectrometry. The potential non-carcinogenic health risk for consumers which included Estimated Daily Intake (EDI) and Target Hazard Quotients (THQ) for Pb, Fe, Mn, Zn, Cd and Cu while carcinogenic health risk using Cancer Slope Factors (CSF) was established for Cd and Pb. Relative abundance of heavy metals across the locations and all samples was in the order Fe > Mn > Zn > Pb > Cu > Cd. There was statistical significant effect of quarrying activities on the concentration of the heavy metals (Fe, Mn, Zn, Pb, Cu, Cd) at p < 0.05 level. Based on the observed bioconcentration factors, cassava showed more hyperaccumulation potential compared to other samples. Pumpkin and bitter leaf also could be used in remediation owing to their high bioaccumulation index for Pb and Zn. THQ obtained for Mn and Pb were >1 indicating that the residents at the quarry site may be exposed to potential non-carcinogenic health risk due to Mn and Pb intoxication. With respect to US EPA prescriptions, average carcinogenic risk values obtained for Pb and Cd in this study indicated a lifetime (70 years) probability of contracting cancer suggesting that they be placed for further consideration as chemicals of concern with respect to the assessed locals.


Author(s):  
Agnieszka Gruszecka-Kosowska

The presence of potentially harmful elements (PHEs) in popularly consumed fruits in Poland was determined by inductively coupled plasma mass spectrometry. The As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Sb, Tl, and Zn contents were investigated in 21 fruit species grouped as berry, pome, stone, and shell fruits. The PHE contents belonged to the following ranges (mg/kg wet weight): Cd < limit of detection (LOD)–0.116, Co < LOD–0.062, Cu < LOD–15.5, Ni < LOD–2.23, Pb < LOD–2.07, Sb < LOD–0.240, Tl < LOD–0.110, and Zn 0.37–37.7. Their concentrations exceeded the maximum allowable concentration (MAC) set by European Union regulation for Pb only. Bioconcentration coefficient (BC) values, calculated in accordance to the PHE contents in exchangeable and acid soluble forms in soil after first step of the Community Bureau of Reference (BCR) sequential extraction procedure, revealed that berry fruits had potential for accumulation of Cu, Ni, Sb, and Tl; stone fruits—Cu, Sb, and Tl; pome fruits—Cu, Ni, and Sb, and shell fruit (walnut)—Cu. Human health risk assessment associated with the intake of PHEs in fruits was evaluated in terms of daily intake rates (DIR), and carcinogenic and non-carcinogenic risk by cancer risk (CR) and hazard quotient (HQ), respectively. For Pb margin of exposure (MOE) approach was used for health risk evaluation. Daily intake rates for all PHEs were below the provisional maximum tolerable daily intake (PMTDI) values. The mean total non-carcinogenic risk values were the following: berry fruits HQ = 0.47, pome fruits HQ = 0.36, stone fruits HQ = 0.42, and shell fruits (walnut) HQ = 0.22, indicating no health hazards. The carcinogenic risk for As in walnut only under an adult intake scenario (CR = 1.98 × 10−6) was found to be above the acceptable risk level. The mean Pb health risk, according to Polish statistical intake rates, was acceptable low as the MOE value was equal to 15.7 for adults. In reference to the intake rates recommended by United States Environmental Protection Agency (USEPA), MOE values for Pb indicated acceptable low risk both for adults (MOE = 14.0) and children (MOE = 1.64). In general, the finding of this research revealed no health risk arising from PHE consumption with fruits for the population of Poland.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Lies Teunen ◽  
Lieven Bervoets ◽  
Claude Belpaire ◽  
Maarten De Jonge ◽  
Thimo Groffen

Abstract Background Despite specific restrictions on their production and use, per- and polyfluoralkyl substances (PFAS) are still omnipresent in the environment, including aquatic ecosystems. Most biomonitoring studies have investigated the PFAS concentrations in indigenous organisms, whereas active biomonitoring has only been used sporadically. In the present study, accumulated PFAS concentrations were measured in indigenous fish, European perch (Perca fluviatilis) and European eel (Anguilla anguilla), and in translocated freshwater mussels (Dreissena bugensis and Corbicula fluminea) at 44 sampling locations within the main water basins of Flanders, the northern part of Belgium. Finally, both human health risk and ecological risk were assessed based on accumulated concentrations in fish muscle. Results Among locations, ΣPFAS concentrations ranged from 8.56–157 ng/g ww (median: 22.4 ng/g ww) in mussels, 5.22–67.8 ng/g ww (median: 20.8 ng/g ww) in perch, and 5.73–68.8 ng/g ww (median: 22.1 ng/g ww) in eel. Concentrations of PFOA and PFTeDA were higher in mussels compared to fish, whereas for PFDA and PFUnDA the opposite was true. A comparison of concentrations on a wet weight basis between both fish species showed significantly higher PFDoDA, PFTrDA, PFTeDA and PFOA concentrations in eel compared to perch and significantly higher concentrations of PFDA and PFOS in perch. In mussels, PFAS profiles were dominated by PFOA and showed a higher relative contribution of short-chained PFAS, while PFAS profiles in fish were dominated by PFOS. Furthermore, all mussel species clearly occupied a lower trophic level than both fish species, based on a stable isotope analysis. Conclusions Biomagnification of PFDA, PFUnDA and PFOS and biodilution of PFOA and PFTeDA were observed. Translocated mussels have been proven suitable to determine which PFAS are present in indigenous fish, since similar PFAS profiles were measured in all biota. Finally, mean PFAS concentrations in fish did pose a human health risk for eel, although tolerable daily intake values for perch were close to the reported daily consumption rates in Belgium and exceeded them in highly contaminated locations. Based on the ecological risk of PFOS, the standard was exceeded at about half of the sampling locations (44% for perch and 58% for eel).


2021 ◽  
Vol 9 (1) ◽  
pp. 184-191
Author(s):  
Sajad Faryabi ◽  
Mohsen Ghorbiani ◽  
Hadi Haghbin Nazarpak ◽  
Azadeh Rashidimehr

Introduction. Contamination of food, including animal protein sources, with heavy metals is a major threat to humans. The aim of this research was to determine lead concentrations in eggs from different Iranian regions and assess risks to human health. Study objects and methods. In this study, lead concentrations in eggs produced at laying hen farms in Qom, Isfahan (Kashan city), and Khorasan Razavi (Mashhad city) provinces were measured by an atomic absorption device. Health risk was estimated using the Human Health Risk Assessment (HHRA) model. Results and discussion. The levels of lead in eggs were significantly different (P ≤ 0.05) among the three regions. They were lower than the permissible limit (0.1 mg/kg) for Kashan (0.0756 mg/kg) and Mashhad (0.0633 mg/kg), but eggs from Qom contained 0.1163 mg/kg of lead. In all the three regions, the estimated daily intake (EDI) of lead was lower than the maximum tolerable daily intake (MTDI), indicating no health risk for lead through egg consumption among Iranian consumers. Also, no risks were detected for adults in terms of non-cancer risk, or target hazard quotients (THQ), and carcinogenic risk (CR) of lead (THQ < 1 and CR < 10–6). Conclusion. The results of this study indicated that lead health risk through egg consumption is within safe limits. However, the nutritional importance and high consumption of eggs among households necessitate a more careful monitoring of lead concentrations to meet public health requirements.


Author(s):  
Gruszecka-Kosowska

Potentially harmful elements (PHEs) were investigated in eight groups of vegetables cultivated in southern Poland and the relevant health-risk implications were assessed. The PHE contents belonged to the following ranges (mg/kg wet weight) in edible parts: As < limit of detection (LOD)-0.056, Cd < LOD–0.375, Co < LOD–0.029, Cu < LOD–7.638, Hg < LOD–0.163, Ni < LOD–0.299, Pb < LOD–0.580, Sb < LOD–0.163, Tl < LOD–0.128, and Zn 1.23–34.9. The PHE concentrations decreased in the following order: Zn > Cu > Ni > Cd > Pb > Sb > Hg > Tl > As > Co. The concentrations of essential PHEs decreased as follows: root > leaf > seed > tuber > legume > inflorescence > shoot > fruit, while the unnecessary PHEs followed this sequence: leaf > root > tuber > legume > inflorescence > seed > shoot > fruit. Soil-to-plant transfer factors revealed capacities to adsorb Cd, Hg, and Tl in roots; Cd, Hg, Tl, and Zn in leaves; Cd, Hg, and Sb in tubers; and Cu, Sb, and Zn in legumes and seeds. The daily intake rates, as a percentage of permissible maximum tolerable daily intake, amounted to the following proportions: Cd 23%, Tl 13%, Hg 5.0%, Ni 3.1%, Pb 2.6%, and As 0.4%. Non-carcinogenic risk described as hazard quotient (HQ) was exceeded in root (HQ = 12.1), leafy (HQ = 2.1), and tuber (HQ = 1.4) vegetables. The carcinogenic risk of As (CR = 8.54 × 10−5) was found unacceptable. The margins of exposure for adults (MOE = 3.1) and children (MOE = 1.6), respectively, indicated a low health risk of Pb in consumed vegetables.


Author(s):  
I. Felagha ◽  
M. O. Monanu ◽  
B. A. Amadi

Heavy metals pose a threat to human health and their presence in specific matrices is anthropogenic. The work focuses on the penetration of the food chain through the ingestion of mollusk proteins. This study evaluated the composition of heavy metals (Cd, Cr, Mn, Pb and Zn) in three species of mollusks (Limicolaria flammea, Viviparus contectus, Egeria radiata) from Yenagoa, Bayelsa State, Nigeria and the health risk associated with their consumption. Heavy metals concentration was determined by Atomic Absorption Spectrophotometer (AAS). Health risk associated with consumption of the samples were assessed by Estimated Daily Intake (EDI), target Hazard Quotient (THQ) and Carcinogenic Risk (CR). EDI, THQ and CR were done by calculation following standards. Heavy metals concentration range in the samples were: Cd (0.289±0.00 mg/kg - 0.667±0.00 mg/kg), Mn (0.816±0.00 mg/kg - 0.934±0.00 mg/kg), Pb (0.082±0.00 mg/kg - 0.092±0.00 mg/kg) and Zn (4.114±0.00 mg/kg - 8.534±0.00 mg/kg); Cr was not detected in neither of the samples.  EDI of heavy metals through consumption of these samples were within acceptable limits for all heavy metals detected. THQ ranges were as follows: Cd (0.4949-1.1420), Mn (0.000017-0.000019), Pb (0.0401 - 0.0450) and Zn (0.0016 - 0.0066).  THQ values indicate that there is no human risk concern of risk for humans except Cd (in E. radiata). CR values for Cd were as follows: L. flammea (3.8×10-3), E. radiata (4.34×10-4) and V. contectus (1.88×10-4). CR values were within acceptable limits with the exception of Cd in L. flammea. The present study shows that the samples contained detectable levels of heavy metals however their consumption do not pose any form of health risk with the except for Cd in L. flammea, hence the carcinogenic role of L. flammea stands out for its high content of Cd.


Author(s):  
Ebimobowei Assayomo ◽  
Solomon Brepi Patrick ◽  
Ruth Angobrakumor Ajimmy ◽  
Eyidenghabofa David Odikeme ◽  
Ahiakwo Bright Ogbo

Aims: Man-made activities such as excessive oil exploration, automobile emissions, gas flaring and agricultural activities tend to elevate the concentrations of heavy metals in the surrounding. Heavy metals have the tendency to accumulate in plant roots, which may result to heavy metal contamination. Objectives: This study aimed at evaluating the concentration of heavy metals such as Lead (Pb), Cadmium (Cd), Nickel and Zinc (Zn) in Pawpaw fruits, seeds, leaf and Scent leaf from Amosoma community in Bayelsa State, Nigeria. The concentrations of these metals were used to assess the human health risk melted to the consumers of the vegetables and fruits. Materials and Methods: Sixteen different vegetables and fruit samples comprising of Pawpaw and Scent leaves were digested and analyzed for heavy metals using Flame Atomic Absorption Spectrophotometer (F-AAS). Results: The result of the present study reviewed that Pb, Cd, Ni, and Zn ranged from 1.090 ± 0.01 - 5.990 ± 0.06; 0.213 ± 0.03 - 1.317 ± 0.02; 2.810 ± 0.04 - 4.767 ± 0.09; and 0.793 ± 0.01 -5.303 ± 0.02 mg/kg, respectively. The concentrations of Pb, Cd, and Ni in some of the analyzed pawpaw and scent leaf samples exceeded the permissible limit as recommended by WHO/FAO, EC/CODEX and NAFDAC respectively. The concentrations of Zn were below the permissible limit as recommended by WHO/FAO. The Estimated Daily Intake (EDI) of Pb and Cd exceeded the oral reference dose (RfDo) however; Ni and Zn fall within the oral RfDo. The Target Hazard Quotient (THQ) and Hazard Index (HI) values of Pb, Cd, Ni and Zn were less than 1. The Carcinogenic Risk (CR) of Cd and Ni exceeded the range of permissible predicted lifetime risks for carcinogens as recommended by US EPA, meanwhile, the carcinogenic risk of Pb was within the permissible predicted lifetime risks as recommended by USEPA. Conclusion: The result from the present study indicate that the fruits and leaves from pawpaw and scent leaf may be contaminated with Pb, Cd, and Ni and the exposed population may be at risk of developing cancer due to carcinogenic ingestion of Cd and Ni over time.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 678
Author(s):  
Kai Zhang ◽  
XiaoNan Li ◽  
ZhenYu Song ◽  
JiaYu Yan ◽  
MengYue Chen ◽  
...  

Cadmium (Cd) is a highly carcinogenic metal that plays an important role in the risk management of soil pollution. In this study, 153 soil samples were collected from a coal chemical plant in northwest China, and the human health risks associated with Cd were assessed through multiple exposure pathways. Meanwhile, by the Kriging interpolation method, the spatial distribution and health risks of Cd were explored. The results showed that the average concentration of Cd in the soil was 0.540 mg/kg, which was 4.821 and 5.567 times that of the soil background value in Ningxia and China, respectively. In comparison, the concentration of Cd in the soil was below the national soil environmental quality three-level standard (1.0 mg/kg). In addition, health risk assessment results showed that the total carcinogenic risk of Cd was 1.269 × 10−6–2.189 × 10−6, both above the acceptable criteria (1 × 10−6), while the hazard quotient was within the acceptable level. Oral intake and ingestion of soil particles were the main routes of exposure, and the carcinogenic risk control value of oral intake was the lowest (0.392 mg/kg), which could be selected as the strict reference of the safety threshold for Cd in the coal chemical soil. From Kriging, a prediction map can be centrally predicted on heavy metal pollution in the area surrounding the coal entrance corridor and pedestrian entrance. This study can provide a theoretical basis for the determination of the heavy metal safety threshold of the coal chemical industry in China.


2021 ◽  
Author(s):  
Tasneem Sarwar ◽  
Sardar Khan ◽  
Said Muhammad ◽  
Javed Nawab ◽  
Shehla Amin ◽  
...  

Abstract Arsenic (As) is one of the toxic metalloids therefore can cause health risk in the consumers through consumption of contaminated food and rice. The current study focused on As speciation in rice, bioavailability, mechanisms and its potential human health risk. For this purpose, rice and soil samples were collected from 16 different districts (non-mining and mining) of Khyber Pakhtunkhwa (Pakistan). Soil physicochemical characteristic such as texture, electrical conductivity (EC), organic matter (OM), pH, iron (Fe) and phosphorus (P) were determined. Total arsenic (AsT) concentrations were analyzed using ICP-MS, while the arsenite (As3+), arsenate (As5+), arsenobetine (BAs), dimethylarsenic (DMA) and monomethyl arsenic (MMA) were determined by HPLC–ICP-MS method. Results showed the highest AsT (0.28 mg/kg) was observed in the rice samples of DI Khan District and lowest (0.06 mg/kg) in Shangla District. However, these findings were found within the permissible limits set by various authorities. Furthermore, results showed higher concentrations of inorganic As (Asi) than organic As (Aso) species in rice. The estimated daily intake (EDI) and incremental lifetime cancer risk (ILTCR) were used to evaluate the potential human health risk for As consumption in rice. Results revealed that the rice samples collected from the district having mining activities had higher value of As (0.28 mg/kg of AsT) as compared to non-mining (0.072 mg/kg of AsT). The highest ILTCR value (0.00196) was observed for rice collected from mining districts. This study revealed that mining activities have great influence on the As contamination of soil and grown rice. This study recommends the soil amendment in districts having mining activities to lower As availability in soil and its bioaccumulation in growing rice that will help to keep lower the potential risk.


2019 ◽  
Vol 12 (4) ◽  
pp. 527-534 ◽  
Author(s):  
Suzanne Kabrite ◽  
Christelle Bou-Mitri ◽  
Jessy El Hayek Fares ◽  
Hussein F. Hassan ◽  
Jocelyne Matar Boumosleh

Background and Aim: The safety and quality of dairy products are considered to be of significant importance to human health. Although antimicrobial drugs are essential for disease treatment in modern medicine, the use of these drugs can have undesired consequences for human and animal health. This study aimed to investigate the presence of tetracycline and penicillin residues in raw, pasteurized, and UHT cow's milk of different fat contents, as well as in the dairy products yogurt and labneh, a traditional Lebanese product. Materials and Methods: A total of 44 samples, 4 raw, 9 UHT, 9 pasteurized milk, 10 yogurt, and 12 labneh samples from common local brands available in the Lebanese market were collected from Keserwan regions in May 2016. Tetracycline and penicillin residues were determined using a competitive enzyme-linked immunosorbent assay (ELISA) technique. Results: The mean values for tetracycline and penicillin were all below the limit of detection (LOD) of the ELISA kit of a maximum standard concentration of 1.80 μg/kg and 4.00 μg/kg, respectively. All samples tested positive for antibiotic residues. The detection rate for tetracycline in milk (n=22) samples was 86.4% with a mean residues value of 1.16±0.70 μg/kg. The detection rate of tetracycline in labneh (n=12) and yogurt (n=10) samples was 50% for each with a mean value of 1.76±0.40 μg/kg and 0.63±0.12 μg/kg, respectively. As for penicillin residues, 90.9% of the milk (n=22) samples tested positive with a mean value of 0.52±0.25 μg/kg. The detection rate in labneh (n=12) and yogurt (n=10) samples was 0% for penicillin residues, where mean values were all below the LOD (<1.25 μg/kg) for these dairy products. None of the samples exceeded the maximum residue levels. The estimated dietary intake (EDI) for tetracycline and penicillin residues for all dairy products is 2.09 ng/kg body weight (BW)/day resulting in 0.007% of the acceptable daily intake (ADI) and 1.83 ng/kg BW/day resulting in 0.006% of the ADI, respectively. Conclusion: All EDI values were below the ADI set for each antibiotic residue and do not exceed relevant toxicological reference values. However, concerns might still be present from consumption of other animal food products containing residues. Moreover, the long-term exposure to such residues is still unknown as a result of bioaccumulation; it is a challenging process to determine the actual dietary consumption of foods containing antibiotic residues; hence, the human health risk cannot be easily predicted.


Sign in / Sign up

Export Citation Format

Share Document