scholarly journals Synthesis of Biochar-Supported K-doped g-C3N4 Photocatalyst for Enhancing the Polycyclic Aromatic Hydrocarbon Degradation Activity

Author(s):  
Fayun Li ◽  
Meixia Lin

The development of novel and green photocatalysts have attracted considerable attentions due to their excellent performance for environmental remediation, especially for the degradation of persistent pollutants. In this work, the biochar-supported K-doped g-C3N4 composites with the high photocatalytic activity under visible light irradiation was prepared by the calcination-impregnation method. The crystal structure, apparent morphology and functional group composition of the as-prepared photocatalytic materials were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscope (FTIR). Moreover, the characterization of UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence technique (PL) verified the good optical properties of resultant samples. Naphthalene was selected as the representative compound to evaluate the photocatalytic performance of the prepared photocatalysts under visible light irradiation. The evaluation results showed that the biochar-supported K-doped g-C3N4 composites exhibited excellent photocatalytic activity (82.19%). Moreover, the photocatalytic degradation rate basically remained unchanged after five cycles, indicating the good stability of the prepared photocatalysts. In addition, a possible mechanism for the photodegradation process was proposed on the basis of the main intermediates detected by gas chromatography-mass spectrometer (GC-MS). This study may provide a promising approach for the polycyclic aromatic hydrocarbon degradation by waste utilization of agricultural biomass and increasing the photocatalytic performance of pure g-C3N4.

2021 ◽  
Vol 50 (9) ◽  
pp. 3253-3260 ◽  
Author(s):  
Shan Zhao ◽  
Junbiao Wu ◽  
Yan Xu ◽  
Xia Zhang ◽  
Yide Han ◽  
...  

CdS/Ag2S/g-C3N4 ternary composites showed excellent photocatalytic performance toward H2 evolution. Their improved photocatalytic activity could be attributed not only to the synergic effect, but also to the introduction of Ag2S.


RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57540-57551 ◽  
Author(s):  
Neelam Mangwani ◽  
Sudhir K. Shukla ◽  
Supriya Kumari ◽  
Surajit Das ◽  
T. Subba Rao

This study with ten marine isolates demonstrates that the attached phenotypes of the marine bacteria showed significant variation in biofilm architecture and, in turn, biodegradation of PAHs.


2018 ◽  
Vol 42 (13) ◽  
pp. 11109-11116 ◽  
Author(s):  
R. Salimi ◽  
A. A. Sabbagh Alvani ◽  
N. Naseri ◽  
S. F. Du ◽  
D. Poelman

A new plasmonic Ag hybridized CuWO4/WO3 heterostructured nanocomposite was successfully synthesized via a ligand-assisted sol gel method and the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation.


2016 ◽  
Vol 45 (35) ◽  
pp. 13709-13716 ◽  
Author(s):  
Yannan Zhou ◽  
Ting Wen ◽  
Binbin Chang ◽  
Baocheng Yang ◽  
Yonggang Wang

Core–shell Cd0.2Zn0.8S@BiOX microspheres with tunable bandgaps, enhanced stability and photocatalytic activity were fabricated via a facile solvothermal route.


Sign in / Sign up

Export Citation Format

Share Document