scholarly journals Visible-enhanced photocatalytic performance of CuWO4/WO3 hetero-structures: incorporation of plasmonic Ag nanostructures

2018 ◽  
Vol 42 (13) ◽  
pp. 11109-11116 ◽  
Author(s):  
R. Salimi ◽  
A. A. Sabbagh Alvani ◽  
N. Naseri ◽  
S. F. Du ◽  
D. Poelman

A new plasmonic Ag hybridized CuWO4/WO3 heterostructured nanocomposite was successfully synthesized via a ligand-assisted sol gel method and the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation.

2018 ◽  
Vol 5 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Abdurrashid Haruna ◽  
Ibrahim Abdulkadir ◽  
Suleiman Ola Idris

Perovskite-like BiFeO3 nanoparticles doped with barium and sodium ions were synthesized via the citric acid route by the sol-gel method. The as-prepared Bi0.65Na0.2Ba0.15FeO3 nanopowders were divided into three equal portions and separately annealed at various annealing temperatures of 600, 700 and 800°C. The powders were characterized using X-ray diffraction (XRD) and crystallized with a rhombohedral R3c space group. Scanning electron microscopy was used to determine the morphology of the crystal and Fourier transform infrared spectroscopy was conducted at room temperature to determine the phase purity and the B-site formation in the perovskite structure. The UV-vis diffuse reflectance spectroscopy of all the materials was investigated, showing strong photoabsorption (λ > 420 nm). The doping effect of BiFeO3 enhanced photocatalytic activity while it significantly reduced the energy bandgap to 2.05 eV (for BNBFO at 800°C) which showed strong visible light absorption. The photocatalytic activity of Bi0.65Na0.2Ba0.15FeO3 nanomaterials was tested by monitoring the degradation rate of methylene blue dye pollutant under visible light irradiation in aqueous solution. All powders showed photoactivity after 2 hours of visible light irradiation. The annealing temperature greatly affected the methylene blue degradation, showing the efficiencies of 57, 67 and 75 % for BNBFO at 600, 700 and 800°C, respectively. Kinetic studies were carried out and the rate constants of 6.70 x 10-3, 8.90 x 10-3 and 1.05 x 10-2 min-1 were obtained for powders annealed at 600, 700 and 800°C, respectively. The photocatalytic mechanism of the degradation process was proposed in this study.


2015 ◽  
Vol 14 (3) ◽  
pp. 536-542 ◽  
Author(s):  
J. J. Macías-Sánchez ◽  
L. Hinojosa-Reyes ◽  
A. Caballero-Quintero ◽  
W. de la Cruz ◽  
E. Ruiz-Ruiz ◽  
...  

The photocatalytic performance of modified 30% wt. N-ZnO nanoparticles under visible light irradiation was demonstrated by the oxidation of picloram and 2,4-D.


Author(s):  
M.Rahim Uddin ◽  
Maksudur R. Khan ◽  
M. Wasikur Rahman ◽  
Chin Kui Cheng ◽  
Abu Yousuf

The present work is a significant approach to explore the photo-conversion of carbon dioxide (CO2) into methanol on Bi2S3/Cds photocatalyst under visible light irradiation. In this perspective, Bi2S3 nanoparticles have been successfully synthesized via corresponding salt and thiourea assisted sol-gel method. An innovative hetero-system Bi2S3/CdS has been proposed to achieve methanol photo evolution and its photocatalytic activities have been investigated.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4918-4925 ◽  
Author(s):  
Fan Shen ◽  
Li Zhou ◽  
Jiajia Shi ◽  
Mingyang Xing ◽  
Jinlong Zhang

SiO2/BiOX (X = Cl, Br, I) thin films with layered structures were prepared using a convenient sol–gel method. The films show a high and stable photocatalytic activity under visible-light irradiation.


2014 ◽  
Vol 875-877 ◽  
pp. 251-256 ◽  
Author(s):  
Lin Sun ◽  
Rong Shao ◽  
Lan Qin Tang ◽  
Zhi Dong Chen

Ag/ZnO nanocomposite photocatalysts with high photocatalytic performance were successfully synthesized via a facile sol-gel method. The prepared Ag/ZnO products were characterized by XRD, SEM, EDS, FT-IR, BET surface area, TG and DSC. Photodegradation experiments of the samples were carried out by choosing Methylene Blue (MB) as a model target under UV irradiation with homemade photocatalytic apparatus. Among these products, when the molar ratio of Ag to ZnO was fixed at 0.07 and the calcination temperature was around 450 °C, the obtained samples exhibited the highest photocatalytic activity.


2021 ◽  
Vol 9 (4) ◽  
pp. 105557
Author(s):  
Fahim Amini Tapouk ◽  
Seperhr Padervand ◽  
Kamyar Yaghmaeian ◽  
Mirzaman Zamanzadeh ◽  
Somayeh Yousefi ◽  
...  

2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040127
Author(s):  
Min Yen Yeh ◽  
Tzu Yuan Yang ◽  
Tsung Chi Wu ◽  
Shiow Yueh Lee ◽  
Shun Hsyung Chang

Core–shell structure [Formula: see text] was synthesized by sol–gel method. The photocatalytic degradation of methylene blue over the [Formula: see text] reached 98% under UV light irradiation within 5 h. The band gap of the core–shell [Formula: see text] was found to have a redshift through a sintering treatment. The redshifted [Formula: see text] had a good performance of methylene-blue degradation (reaching 85%) under visible light irradiation for 5 h.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 352 ◽  
Author(s):  
Benjawan Moongraksathum ◽  
Jun-Ya Shang ◽  
Yu-Wen Chen

Cu-doped titanium dioxide thin films (Cu/TiO2) were prepared on glass substrate via peroxo sol-gel method and dip-coating process with no subsequent calcination process for the degradation of organic dye and use as an antibacterial agent. The as-prepared materials were characterised using transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For photocatalytic degradation of methylene blue in water, the samples were subjected to Ultraviolet C (UVC) and visible light irradiation. Degraded methylene blue concentration was measured using UV-Vis spectrophotometer. The antibacterial activities of the samples were tested against the gram-negative bacteria Escherichia coli (ATCC25922). Copper species were present in the form of CuO on the surface of modified TiO2 particles, which was confirmed using TEM and XPS. The optimal observed Cu/TiO2 weight ratio of 0.5 represents the highest photocatalytic activities under both UVC and visible light irradiation. Moreover, the same composition remarkably exhibited high antibacterial effectiveness against E. coli after illumination with ultraviolet A. The presence of CuO on TiO2 significantly enhanced photocatalytic activities. Therefore, active Cu-doped TiO2 can be used as a multipurpose coating material.


Sign in / Sign up

Export Citation Format

Share Document