scholarly journals Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography

Author(s):  
Parastoo Golpour ◽  
Majid Ghayour-Mobarhan ◽  
Azadeh Saki ◽  
Habibollah Esmaily ◽  
Ali Taghipour ◽  
...  

(1) Background: Coronary angiography is considered to be the most reliable method for the diagnosis of cardiovascular disease. However, angiography is an invasive procedure that carries a risk of complications; hence, it would be preferable for an appropriate method to be applied to determine the necessity for angiography. The objective of this study was to compare support vector machine, naïve Bayes and logistic regressions to determine the diagnostic factors that can predict the need for coronary angiography. These models are machine learning algorithms. Machine learning is considered to be a branch of artificial intelligence. Its aims are to design and develop algorithms that allow computers to improve their performance on data analysis and decision making. The process involves the analysis of past experiences to find practical and helpful regularities and patterns, which may also be overlooked by a human. (2) Materials and Methods: This cross-sectional study was performed on 1187 candidates for angiography referred to Ghaem Hospital, Mashhad, Iran from 2011 to 2012. A logistic regression, naive Bayes and support vector machine were applied to determine whether they could predict the results of angiography. Afterwards, the sensitivity, specificity, positive and negative predictive values, AUC (area under the curve) and accuracy of all three models were computed in order to compare them. All analyses were performed using R 3.4.3 software (R Core Team; Auckland, New Zealand) with the help of other software packages including receiver operating characteristic (ROC), caret, e1071 and rminer. (3) Results: The area under the curve for logistic regression, naïve Bayes and support vector machine were similar—0.76, 0.74 and 0.75, respectively. Thus, in terms of the model parsimony and simplicity of application, the naïve Bayes model with three variables had the best performance in comparison with the logistic regression model with seven variables and support vector machine with six variables. (4) Conclusions: Gender, age and fasting blood glucose (FBG) were found to be the most important factors to predict the result of coronary angiography. The naïve Bayes model performed well using these three variables alone, and they are considered important variables for the other two models as well. According to an acceptable prediction of the models, they can be used as pragmatic, cost-effective and valuable methods that support physicians in decision making.

Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


JURTEKSI ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11-18
Author(s):  
Chika Enggar Puspita ◽  
Oktariani Nurul Pratiwi ◽  
Edi Sutoyo

Abstract: Question classification is a computer science system, which aims to analyze questions and can label each question based on existing categories. Questions can be collected from several materials or topics that are many and different. Therefore, the researcher intends to create a classification system for quiz questions Data Warehouse and Business Intelligence which can be grouped into topics Data Warehouse, Business Intelligence, Data Analytics, and Performance Measurement. One way to solve this problem is by approach machine learning. In this study, researchers used a comparison of machine learning algorithms, namely the algorithm NaïveBayes and SupportVectorMachine using SMOTE and methods Cross-Validation The results of this study show the best accuracy results and are very helpful. The results obtained in the method cross-validation before SMOTE resulted in an accuracy rate of 82.02% for the results after going through the SMOTE stage of 94.79% on the algorithm Naïve Bayes, while the algorithm SupportVectorMachine get accuracy of 81.39% in the process before SMOTE for the results after going through SMOTE of 96.52%.  Keywords: Cross-Validation; Machine Learning; Naive Bayes; Support Vector Machine; Question Classification  Abstrak: Klasifikasi pertanyaan merupakan sebuah sistem ilmu komputer, yang bertujuan untuk menganalisis pertanyaan serta dapat memberi label pada setiap pertanyaan berdasarkan kategori yang ada. Pertanyaan soal dapat dikumpulkan dari beberapa materi atau topik yang banyak dan berbeda. Oleh karena itu, bermaksud untuk membuat sistem klasifikasi pertanyaan soal kuis Data Warehouse dan Business Intelligence yang dapat dikelompokkan menjadi topik Data Warehouse, Business Intelligence, Data Analitik, dan Pengukuran Kinerja. Cara  yang dapat dilakukan untuk permasalahan ini dengan menggunakan pendekatan MachineLearning. Pada penelitian kali ini menggunakan perbandingan algoritma MachineLearning yaitu algoritma NaïveBayes dan SupportVectorMachine menggunakan metode SMOTE dan Cross-Validation. Hasil penelitian ini menunjukkan hasil akurasi yang terbaik dan sangat membantu. Hasil yang diperoleh pada metode cross-validation sebelum SMOTE menghasilkan tingkat akurasi sebesar 82.02% untuk hasil sesudah melalui tahap SMOTE sebesar 94.79 %  pada algoritma Naïve Bayes, sedangkan pada algoritma Support Vector Machine menghasilkan akurasi sebesar pada proses sebelum SMOTE 81.39% untuk hasil sesudah melalui SMOTE sebesar 96.52%. Kata kunci: Klasifikasi Pertanyaan; Pembelajaran Mesin; Naive Bayes; Support Vector Machine; Cross-Validation


Author(s):  
Fillemon S. Enkono ◽  
Nalina Suresh

Fraudulent e-wallet deposit notification SMSes designed to steal money and goods from m-banking users have become pervasive in Namibia. Motivated by an observed lack of mobile applications to protect users from such deceptions, this study evaluated the ability of machine learning to detect the fraudulent e-wallet deposit notification SMSes. The naïve Bayes (NB) and support vector machine (SVM) classifiers were trained to classify both ham (desired) SMSes and scam (fraudulent) e-wallet deposit notification SMSes. The performances of the two classifier models were then evaluated. The results revealed that the SVM classifier model could detect the fraudulent SMSes more efficiently than the NB classifier.


Author(s):  
Hongxin Wang ◽  
Lijing Jia ◽  
Heng Zhuang ◽  
Xueyan Li ◽  
Yuzhuo Zhao ◽  
...  

This study is to solve the problems of an overly-broad scale of medical indicators, lack of retrospective research samples, insufficient depth of data mining, and low disease prediction accuracy. In this paper, we propose an intelligent screening algorithm that combines a genetic algorithm, cellular automata, and rough set theory. This algorithm can achieve high accuracy in predicting patient outcomes with a small number of indicators. And we compare it with the traditional genetic algorithm. We built the prediction model with 64 indicators based on the logistic regression (AUC 0.8628), support vector machine (AUC 0.5319), Naïve Bayes (AUC 0.7102), and AdaBoost algorithms (AUC 0.9095). Using the cellular genetic algorithm for attribute screening not only effectively reduces the number of indicators but also achieve almost the same accuracy of prediction with 8 indicators based on the logistic regression (AUC 0.8782), support vector machine (AUC 0.8525), Naïve Bayes (AUC 0.8408), and AdaBoost algorithms (AUC 0.8770). Compared with the traditional scoring system, the predictive model established in this paper can more accurately predict rebleeding accidents based on physiological test indicators and continuous patient indicators.


2021 ◽  
Vol 1 (1) ◽  
pp. 14-20
Author(s):  
Tommy Tommy ◽  
Amir Mahmud Husein

Perguruan tinggi merupakan satuan penyelenggara pendidikan tinggi sebagai tingkat lanjut jenjang pendidikan menengah di jalur pendidikan formal. Aspek prestasi belajar merupakan salah satu aspek penilaian keberhasilan perguruan tinggi dalam proses belajar. Dalam makalah ini menyajikan hasil analisis hubungan antara pembelajaran dengan prestasi mahasiswa dimana tahapan yang dilakukan menggunakan pendetakan data science. Berdasarkan Analisis data terdapat tiga indikator penting dalam penilaian prestasi belajar yaitu pedagogi, profesional dan kepribadian. Ketiga fitur digunakan sebagai variabel dependen untuk memprediksi prestasi belajar dimana algoritma DecisionTree menghasilkan akurasi lebih baik dari pada model k-nearest neighbors (KNN), Logistic Regression, Support Vector Machine, Naive Bayes dan dengan tingkat akurasi 68%, kemudian KNN dengan akurasi 66% dan lainnya sebesar 55% pada masing-masing algoritma yang diusulkan.


2020 ◽  
Vol 13 (5) ◽  
pp. 901-908
Author(s):  
Somil Jain ◽  
Puneet Kumar

Background:: Breast cancer is one of the diseases which cause number of deaths ever year across the globe, early detection and diagnosis of such type of disease is a challenging task in order to reduce the number of deaths. Now a days various techniques of machine learning and data mining are used for medical diagnosis which has proven there metal by which prediction can be done for the chronic diseases like cancer which can save the life’s of the patients suffering from such type of disease. The major concern of this study is to find the prediction accuracy of the classification algorithms like Support Vector Machine, J48, Naïve Bayes and Random Forest and to suggest the best algorithm. Objective:: The objective of this study is to assess the prediction accuracy of the classification algorithms in terms of efficiency and effectiveness. Methods: This paper provides a detailed analysis of the classification algorithms like Support Vector Machine, J48, Naïve Bayes and Random Forest in terms of their prediction accuracy by applying 10 fold cross validation technique on the Wisconsin Diagnostic Breast Cancer dataset using WEKA open source tool. Results:: The result of this study states that Support Vector Machine has achieved the highest prediction accuracy of 97.89 % with low error rate of 0.14%. Conclusion:: This paper provides a clear view over the performance of the classification algorithms in terms of their predicting ability which provides a helping hand to the medical practitioners to diagnose the chronic disease like breast cancer effectively.


Sign in / Sign up

Export Citation Format

Share Document