Cavity auto-detection using machine learning algorithms: Logistic regression, support vector machine, and naïve Bayes

2020 ◽  
Author(s):  
Hakim Saibi* ◽  
Abdelkader Nasreddine Belkacem ◽  
Mohamed Amrouche
Author(s):  
Harshal Surve ◽  
Aditya Mestry

Sarcasm is the use of words usually used to indirectly either mock or annoy someone, or for humorous purposes. One of the difficult modes of communication for machines to identify is sarcasm. People often use sarcasm in their daily communication to indirectly annoy people which makes it very important to identify the sentence meaning. There are various machine learning algorithms for sarcasm detection such as Naïve Bayes (NB), Support Vector Machine (SVM), Logistics Regression (LR), Decision Trees (DT).All these algorithm can be used for Sarcasm Detection. The main goal of this paper is to provide various machine learning algorithms for sarcasm detection.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit


2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


2021 ◽  
Author(s):  
Floe Foxon

Ammonoid identification is crucial to biostratigraphy, systematic palaeontology, and evolutionary biology, but may prove difficult when shell features and sutures are poorly preserved. This necessitates novel approaches to ammonoid taxonomy. This study aimed to taxonomize ammonoids by their conch geometry using supervised and unsupervised machine learning algorithms. Ammonoid measurement data (conch diameter, whorl height, whorl width, and umbilical width) were taken from the Paleobiology Database (PBDB). 11 species with ≥50 specimens each were identified providing N=781 total unique specimens. Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbours, and Support Vector Machine classifiers were applied to the PBDB data with a 5x5 nested cross-validation approach to obtain unbiased generalization performance estimates across a grid search of algorithm parameters. All supervised classifiers achieved ≥70% accuracy in identifying ammonoid species, with Naive Bayes demonstrating the least over-fitting. The unsupervised clustering algorithms K-Means, DBSCAN, OPTICS, Mean Shift, and Affinity Propagation achieved Normalized Mutual Information scores of ≥0.6, with the centroid-based methods having most success. This presents a reasonably-accurate proof-of-concept approach to ammonoid classification which may assist identification in cases where more traditional methods are not feasible.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms


2019 ◽  
Vol 16 (9) ◽  
pp. 3840-3848
Author(s):  
Neeraj Kumar ◽  
Jatinder Manhas ◽  
Vinod Sharma

Advancement in technology has helped people to live a long and better life. But the increased life expectancy has also elevated the risk of age related disorders, especially the neurodegenerative disorders. Alzheimer’s is one such neurodegenerative disorder, which is also the leading contributor towards dementia in elderly people. Despite of extensive research in this field, scientists have failed to find a cure for the disease till date. This makes early diagnosis of Alzheimer’s very crucial so as to delay its progression and improve the condition of the patient. Various techniques are being employed for diagnosing Alzheimer’s which include neuropsychological tests, medical imaging, blood based biomarkers, etc. Apart from this, various machine learning algorithms have been employed so far to diagnose Alzheimer’s in its early stages. In the current research, authors compared the performance of various machine learning techniques i.e., Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Naïve Bayes (NB), Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF) and Multi Layer Perceptron (MLP) on Alzheimer’s dataset. This paper experimentally demonstrated that normalization exhibits a predominant role in enhancing the efficiency of some machine learning algorithms. Therefore it becomes imperative to choose the algorithms as per the available data. In this paper, the efficiency of the given machine learning methods was compared in terms of accuracy and f1-score. Naïve Bayes gave a better overall performance for both accuracy and f1-score and it also remained unaffected with the normalization of data along with LDA, DT and RF. Whereas KNN, SVM and MLP showed a drastic (17% to 86%) improvement in the performance when they are given normalized data as compared to un-normalized data from Alzheimer’s dataset.


Author(s):  
Akshma Chadha ◽  
Baijnath Kaushik

Abstract Suicide is a major health issue nowadays and has become one of the highest reason for deaths. There are many negative emotions like anxiety, depression, stress that can lead to suicide. By identifying the individuals having suicidal ideation beforehand, the risk of them completing suicide can be reduced. Social media is increasingly becoming a powerful platform where people around the world are sharing emotions and thoughts. Moreover, this platform in some way is working as a catalyst for invoking and inciting the suicidal ideation. The objective of this proposal is to use social media as a tool that can aid in preventing the same. Data is collected from Twitter, a social networking site using some features that are related to suicidal ideation. The tweets are preprocessed as per the semantics of the identified features and then it is converted into probabilistic values so that it will be suitably used by machine learning and ensemble learning algorithms. Different machine learning algorithms like Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Decision Tree, Logistic Regression, Support Vector Machine were applied on the data to predict and identify trends of suicidal ideation. Further the proposed work is evaluated with some ensemble approaches like Random Forest, AdaBoost, Voting Ensemble to see the improvement.


Author(s):  
Parastoo Golpour ◽  
Majid Ghayour-Mobarhan ◽  
Azadeh Saki ◽  
Habibollah Esmaily ◽  
Ali Taghipour ◽  
...  

(1) Background: Coronary angiography is considered to be the most reliable method for the diagnosis of cardiovascular disease. However, angiography is an invasive procedure that carries a risk of complications; hence, it would be preferable for an appropriate method to be applied to determine the necessity for angiography. The objective of this study was to compare support vector machine, naïve Bayes and logistic regressions to determine the diagnostic factors that can predict the need for coronary angiography. These models are machine learning algorithms. Machine learning is considered to be a branch of artificial intelligence. Its aims are to design and develop algorithms that allow computers to improve their performance on data analysis and decision making. The process involves the analysis of past experiences to find practical and helpful regularities and patterns, which may also be overlooked by a human. (2) Materials and Methods: This cross-sectional study was performed on 1187 candidates for angiography referred to Ghaem Hospital, Mashhad, Iran from 2011 to 2012. A logistic regression, naive Bayes and support vector machine were applied to determine whether they could predict the results of angiography. Afterwards, the sensitivity, specificity, positive and negative predictive values, AUC (area under the curve) and accuracy of all three models were computed in order to compare them. All analyses were performed using R 3.4.3 software (R Core Team; Auckland, New Zealand) with the help of other software packages including receiver operating characteristic (ROC), caret, e1071 and rminer. (3) Results: The area under the curve for logistic regression, naïve Bayes and support vector machine were similar—0.76, 0.74 and 0.75, respectively. Thus, in terms of the model parsimony and simplicity of application, the naïve Bayes model with three variables had the best performance in comparison with the logistic regression model with seven variables and support vector machine with six variables. (4) Conclusions: Gender, age and fasting blood glucose (FBG) were found to be the most important factors to predict the result of coronary angiography. The naïve Bayes model performed well using these three variables alone, and they are considered important variables for the other two models as well. According to an acceptable prediction of the models, they can be used as pragmatic, cost-effective and valuable methods that support physicians in decision making.


Sign in / Sign up

Export Citation Format

Share Document