scholarly journals Improvement of Ficin-Based Inhibitive Enzyme Assay for Toxic Metals Using Response Surface Methodology and Its Application for Near Real-Time Monitoring of Mercury in Marine Waters

Author(s):  
Garba Uba ◽  
Motharasan Manogaran ◽  
Baskaran Gunasekaran ◽  
Mohd Izuan Effendi Halmi ◽  
Mohd Yunus Abd Shukor

Potentially toxic metals pollution in the Straits of Malacca warrants the development of rapid, simple and sensitive assays. Enzyme-based assays are excellent preliminary screening tools with near real-time potential. The heavy-metal assay based on the protease ficin was optimized for mercury detection using response surface methodology. The inhibitive assay is based on ficin action on the substrate casein and residual casein is determined using the Coomassie dye-binding assay. Toxic metals strongly inhibit this hydrolysis. A central composite design (CCD) was utilized to optimize the detection of toxic metals. The results show a marked improvement for the concentration causing 50% inhibition (IC50) for mercury, silver and copper. Compared to one-factor-at-a-time (OFAT) optimization, RSM gave an improvement of IC50 (mg/L) from 0.060 (95% CI, 0.030–0.080) to 0.017 (95% CI, 0.016–0.019), from 0.098 (95% CI, 0.077–0.127) to 0.028 (95% CI, 0.022–0.037) and from 0.040 (95% CI, 0.035–0.045) to 0.023 (95% CI, 0.020–0.027), for mercury, silver and copper, respectively. A near-real time monitoring of mercury concentration in the Straits of Malacca at one location in Port Klang was carried out over a 4 h interval for a total of 24 h and validated by instrumental analysis, with the result revealing an absence of mercury pollution in the sampling site.

Author(s):  
Garba Uba ◽  
Motharasan Manogaran ◽  
Baskaran Gunasekaran ◽  
Mohd Izuan Effendi Halmi ◽  
Mohd Yunus Abd Shukor

Heavy metals pollution in the Straits of Malacca warrants the development of rapid, simple and sensitive assays. Enzyme-based assays are excellent preliminary screening tool with near real-time potential. The heavy-metal assay based on the protease ficin was optimized for mercury detection using Response Surface Methodology. The inhibitive assay is based on ficin action on the substrate casein and residual casein is determined using the Coomassie dye-binding assay. Heavy metals strongly inhibit the hydrolysis. A Central Composite Design (CCD) was utilized to optimize detection. The results show a marked improvement for the concentration causing 50% inhibition (IC50) for mercury, silver and copper. Compared to One-factor-at-a-time (OFAT) optimization, RSM gave an improvement of IC50 from 0.060 (95% CI, 0.0300.080) to 0.017 (95% CI, 0.0160.019), from 0.098 (95% CI, 0.0770.127) to 0.028 (95% CI, 0.0220.037) and from 0.040 (95% CI, 0.035.045) to 0.023 (95% CI, 0.0200.027), for mercury, silver and copper, respectively. A near real-time monitoring of mercury concentration in the Straits of Malacca at one location in Port Klang was carried out over a 4-h interval for a total of 24 h and validated by instrumental analysis with the result revealing an absence of mercury pollution in the sampling site.


2006 ◽  
Vol 175 (4S) ◽  
pp. 521-521
Author(s):  
Motoaki Saito ◽  
Tomoharu Kono ◽  
Yukako Kinoshita ◽  
Itaru Satoh ◽  
Keisuke Satoh

Sign in / Sign up

Export Citation Format

Share Document