Chemometric Methods for the Study of Toxic Metals on the Growth of Plants: Use of Experimental Design and Response Surface Methodology

1990 ◽  
Vol 38 (2) ◽  
pp. 279-304 ◽  
Author(s):  
Mahmoud A. Allus ◽  
Richard G. Brereton
Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


2018 ◽  
Vol 138 ◽  
pp. 849-860 ◽  
Author(s):  
Joana M. Pinheiro ◽  
Sérgio Salústio ◽  
Anabela A. Valente ◽  
Carlos M. Silva

2020 ◽  
Vol 998 ◽  
pp. 277-282
Author(s):  
Narissara Kulpreechanan ◽  
Feuangthit N. Sorasitthiyanukarn

Capsaicin (CAP) is a pungent alkaloid of chili peppers that is obtained from chili peppers that has a variety of pharmacological activities and can be used in various areas, such as functional foods, nutritional supplements and medical nutrition. Capsaicin has important anticancer, antioxidant and anti-inflammatory properties that allow to be applied as treatment for several diseases. However, its lack of water solubility, as well as its poor oral bioavailability in biological systems, show limiting factors for its successful application. Recently, the formulation of capsaicin for food and pharmaceutical use is limited. Therefore, the present study emphasized on preparation of capsaicin-loaded chitosan nanoparticles (CAP-CSNPs) and design and optimization of the formulation using Box-Behnken experimental design (BBD) and response surface methodology (RSM). The capsaicin-loaded chitosan nanoparticles were prepared by o/w emulsification and ionotropic gelification. The optimized formulation of capsaicin-loaded chitosan nanoparticles had a chitosan concentration of 0.11 (%w/v), a Tween 80® concentration of 1.55 (%w/v) and a CAP concentration of 1 mg/mL and that it should be stored at 4°C. Box-Behnken experimental design and response surface methodology was found to be a powerful technique for design and optimization of the preparation of capsaicin-loaded chitosan nanoparticles using limited number of experimental runs. Our study demonstrated that capsaicin-loaded chitosan nanoparticles can be potentially utilized as dietary supplements, nutraceuticals and functional foods.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 506
Author(s):  
Everton Gripa ◽  
Alyne M. Costa ◽  
Juacyara C. Campos ◽  
Fabiana V. da Fonseca

Batch ozonation was performed to assess its efficacy as a pretreatment for reverse osmosis (RO) membranes for treating leachate with high concentrations of recalcitrant organic compounds. Leachate samples from two different landfills were collected and characterized. The modified fouling index (MFI) was used to estimate the fouling potential of raw and ozonized leachates. A response surface experimental design was applied to optimize operational pH and ozone dose. The results demonstrate that the best operational conditions are 1.5 g/L of O3 at pH 12.0 and 1.5 g/L of O3 at pH 9.0 for Landfills 1 and 2, which reduce MFI by 96.22% and 94.08%, respectively. Additionally, they show toxicity factor decays of 98.44% for Landfill 1 and 93.75% for Landfill 2. These results, along with the similar behavior shown by leachate samples from distinct landfills, suggest that ozonation is a promising technology to fit this kind of wastewater into the requirements of RO membranes, enabling their use in such treatment.


Author(s):  
Garba Uba ◽  
Motharasan Manogaran ◽  
Baskaran Gunasekaran ◽  
Mohd Izuan Effendi Halmi ◽  
Mohd Yunus Abd Shukor

Potentially toxic metals pollution in the Straits of Malacca warrants the development of rapid, simple and sensitive assays. Enzyme-based assays are excellent preliminary screening tools with near real-time potential. The heavy-metal assay based on the protease ficin was optimized for mercury detection using response surface methodology. The inhibitive assay is based on ficin action on the substrate casein and residual casein is determined using the Coomassie dye-binding assay. Toxic metals strongly inhibit this hydrolysis. A central composite design (CCD) was utilized to optimize the detection of toxic metals. The results show a marked improvement for the concentration causing 50% inhibition (IC50) for mercury, silver and copper. Compared to one-factor-at-a-time (OFAT) optimization, RSM gave an improvement of IC50 (mg/L) from 0.060 (95% CI, 0.030–0.080) to 0.017 (95% CI, 0.016–0.019), from 0.098 (95% CI, 0.077–0.127) to 0.028 (95% CI, 0.022–0.037) and from 0.040 (95% CI, 0.035–0.045) to 0.023 (95% CI, 0.020–0.027), for mercury, silver and copper, respectively. A near-real time monitoring of mercury concentration in the Straits of Malacca at one location in Port Klang was carried out over a 4 h interval for a total of 24 h and validated by instrumental analysis, with the result revealing an absence of mercury pollution in the sampling site.


Author(s):  
Haroldo Yukio Kawaguti ◽  
Eiric Manrich ◽  
Luciana Francisco Fleuri ◽  
Hélia Harumi Sato

2015 ◽  
Vol 40 (6) ◽  
Author(s):  
İrem Deniz ◽  
Esra İmamoğlu ◽  
Meltem Conk Dalay

AbstractObjective: Physical process parameters play a major role in the cultivation of cyanobacteria to provide high yield. The aim of this study was to optimize physical parameters such as light intensity and agitation rate which might affect the phycobiliprotein formations for cyanobacterial strains of Oscillatoria agardhii and Synechococcus nidulans using response surface methodology.Methods: The cyanobacterial strains were cultured in 250 mL flasks containing 100 mL of EM medium in orbital shaking incubator under the temperature of 22±2°C at different light intensities and agitation rates for 10 days. The experimental design was carried out using 2Results: The optimization solution of O. agardhii (approximately at 156 rpm under the light intensity of 65 μmol photons mConclusion: High agitation rate stimulated the faster growth than increased the light intensity for the growths of cyanobacterial strains.


2012 ◽  
Author(s):  
Clarence M. Ongkudon ◽  
Badarulhisam Abdul Rahman ◽  
Azila Abd. Aziz

Transferin manusia (hTf) memainkan peranan yang penting dalam fungsi bakteriostatik dan pengangkutan ferum dari bahagian penyimpanan ke sel–sel yang membiak melalui proses endositosis janaan reseptor. Sistem ekspresi bakulovirus sel serangga telah dipakai secara meluas sebagai sistem alternatif dalam penghasilan Transferin manusia rekombinan (rhTf). Kajian ini ditumpukan ke atas pengoptimuman glutamina, glukosa dan campuran lipid 1000x yang dapat meningkatkan penghasilan rhTf. Reka bentuk eksperimen yang melibatkan 17 eksperimen reka bentuk komposit berpusat (CCD) telah digunakan dan hasil kajian dianalisis oleh Statistika (Statsoft v. 5.0). Metodologi permukaan tindak balas (RSM) telah mengenalpasti nilai optimum parameterparameter yang dikaji iaitu glutamina=2211.20 mg/L, glukosa=1291.95 mg/L, dan campuran lipid 1000x=0.64 %v/v. Hasil optimasi menunjukkan peningkatan hasil rhTf sebanyak tiga kali ganda, iaitu daripada 19.89 μg/ml kepada 65.12 μg/ml. Kata kunci: Transferin manusia; bakulovirus sel serangga; reka bentuk eksperimen; reka bentuk komposit berpusat; metodologi permukaan tindak balas Human Transferrin (hTf) plays a big role in providing bacteriostatic functions as well as to transport iron from the storage part to all proliferating cells by receptor mediated endocytosis. Insect cells baculovirus expression system has been widely used as an alternative expression system for the production of recombinant human Transferrin (rhTf). This work focused mainly on the optimization of glutamine, glucose and lipid mixtures 1000x to increase rhTf yield. An experimental design involving 17 central composite design (CCD) experiments was employed and results were analyzed by Statistica (Statsoft v. 5.0). The response surface methodology (RSM) had identified the optimum values where glutamine=2211.20 mg/L, glucose=1291.95 mg/L, and lipid mixtures 1000x=0.64 %v/v. Using the optimized parameters, the studies demonstrated an increase in the rhTf yield by three–fold from 19.89 μg/ml to 65.12 μg/ml. Key words: Human transferrin; insect cells baculovirus; experimental design; central composite design; response surface methodology


Sign in / Sign up

Export Citation Format

Share Document