scholarly journals A Sustainable Solution to Obtain P-K-Mn Glass Fertilizers from Cheap and Readily Available Wastes

Author(s):  
Cosmin Vancea ◽  
Giannin Mosoarca ◽  
Simona Popa

The sustainable economy framework imposes the adoption of new ways for waste reuse and recycling. In this context, this paper proposes a new alternative to obtain glass fertilizers (agriglasses) by reusing two cheap and easily available wastes, wood ash and manganese rich sludge resulting from drinking water treatment processes for groundwater sources. Glasses were obtained using different amounts of wastes together with (NH4)2HPO4 and K2CO3 as raw materials. The P-K-Mn nutrient solubilization from the obtained glasses was investigated using a citric acid solution. The kinetics of the leaching process was studied after 1, 7, 14, 21 and 28 days, respectively. The intraparticle diffusion model was used to interpret kinetic data. Two distinct stages of the ion leaching process were recorded for all of the studied compositions: first through intraparticle diffusion (the rate-controlling stage) and second through diffusion through the particle–medium interface. The fertilization effect of the obtained agriglasses was studied on a barley crop. The specific plant growth parameters of germination percentage, average plant height, biomass and relative growth rate were determinate. The positive impact of the agriglasses upon the plants biomass and relative growth rate was highlighted. The effects of agriglasses can be tuned through glass compositions that affect the solubility of the nutrients.

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6501
Author(s):  
Mohammad Ajlouni ◽  
Audrey Kruse ◽  
Jorge A. Condori-Apfata ◽  
Maria Valderrama Valencia ◽  
Chris Hoagland ◽  
...  

Crop growth analysis is used for the assessment of crop yield potential and stress tolerance. Capturing continuous plant growth has been a goal since the early 20th century; however, this requires a large number of replicates and multiple destructive measurements. The use of machine vision techniques holds promise as a fast, reliable, and non-destructive method to analyze crop growth based on surrogates for plant traits and growth parameters. We used machine vision to infer plant size along with destructive measurements at multiple time points to analyze growth parameters of spring wheat genotypes. We measured side-projected area by machine vision and RGB imaging. Three traits, i.e., biomass (BIO), leaf dry weight (LDW), and leaf area (LA), were measured using low-throughput techniques. However, RGB imaging was used to produce side projected area (SPA) as the high throughput trait. Significant effects of time point and genotype on BIO, LDW, LA, and SPA were observed. SPA was a robust predictor of leaf area, leaf dry weight, and biomass. Relative growth rate estimated using SPA was a robust predictor of the relative growth rate measured using biomass and leaf dry weight. Large numbers of entries can be assessed by this method for genetic mapping projects to produce a continuous growth curve with fewer replicates.


1994 ◽  
Vol 21 (4) ◽  
pp. 507 ◽  
Author(s):  
H Poorter ◽  
GD Farquhar

Various aspects of the water economy were investigated for a range of herbaceous species varying in relative growth rate. Plants were grown in a growth chamber with a non-limiting supply of water and nutrients, and the rate of transpiration, short-term intercellular CO2 concentration and long-term carbon isotope discrimination (Δ) in the leaves were determined. No correlation was found between the relative growth rate of these species, and the transpiration rate per unit leaf area, the intercellular CO2 concentration and the 13C-discrimination. There was a positive correlation, however, with the rate of water uptake per unit root weight. From these observations we infer that the previously observed differences in photosynthetic nitrogen-use efficiency, the rate of photosynthesis per unit leaf nitrogen, can not be explained by variation in intercellular CO2 concentration. These data were also used to analyse correlations between Δ and both growth parameters and chemical composition. Apart from parameters related to the water economy, Δ only correlated (positively) with the fractional biomass allocation to the roots (root weight ratio) and the specific root length (root length divided by root weight), and not with any other investigated growth parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
M. M. A. Mondal ◽  
A. B. Puteh ◽  
M. A. Malek ◽  
M. R. Ismail ◽  
M. Y. Rafii ◽  
...  

Growth parameters such as leaf area (LA), total dry mass (TDM) production, crop growth rate (CGR), relative growth rate (RGR), and net assimilation rate (NAR) were compared in six varieties of mungbean under subtropical condition (24°8′ N 90°0′ E) to identify limiting growth characters for the efficient application of physiology breeding for higher yields. Results revealed that a relatively smaller portion of TDM was produced before flower initiation and the bulk of it after anthesis. The maximum CGR was observed during pod filling stage in all the varieties due to maximum leaf area (LA) development at this stage. Two plant characters such as LA and CGR contributed to the higher TDM production. Results indicated that high yielding mungbean varieties should possess larger LA, higher TDM production ability, superior CGR at all growth stages, and high relative growth rate and net assimilation rate at vegetative stage which would result in superior yield components.


Author(s):  
A. Pagani ◽  
J. Molinari ◽  
E. Giardina ◽  
A. Di Benedetto

Pot ornamental plant productivity is related to the environmental growth facilities but negatively affected by the pot root restriction syndrome. Most ferns showed a lower relative growth rate and long production cycles (24 months or more) for which growers use small pots to increase yield per unit area of greenhouse. The aim of this work was to analyze growth changes in response to different pot volume in plants of A. nidus avis spore-propagated under the hypothesis that it would play a role as an abiotic stress which decrease commercial productivity. Our results showed that the use of big pots increased fresh and dry weight and frond area (the main aesthetic trait). When growth parameters were performed, a higher the frond appearance rate (RLA), the frond area expansion (RLAE) and the frond thickness (SLA) were found in 1500 cm3 pot as well as the relative growth rate (RGR) and the net assimilation rate. The use of biggest pot for fern cropping stimulated biomass accumulation through a higher capacity to initiate and expand fronds, to increase photosynthetic rates and change photo assimilate partitioning which favor shoots. From the grower´s point of view, our results suggested that higher yields of A. nidus avis fern would be reached decreasing root restriction, that is, to use the biggest pot volume from the early transplant from plug trays.


Sign in / Sign up

Export Citation Format

Share Document