scholarly journals Correlation between Primary, Secondary Stability, Bone Density, Percentage of Vital Bone Formation and Implant Size

Author(s):  
Vasilena Ivanova ◽  
Ivan Chenchev ◽  
Stefan Zlatev ◽  
Eitan Mijiritsky

Background: This study aims to evaluate whether there is a correlation between implant stability, bone density, vital bone formation and implant diameter and length. Methods: Ninety patients were enrolled in this study. They underwent a socket preservation procedure with allograft or PRF and after 4 months, a total of 90 implants were placed. CBCT scans were assigned prior to implant placement in order to assess the bone density. During the surgical re-entry, a bone biopsy was harvested with a trephine drill. Immediately after implant insertion, the primary stability was measured. The secondary stability was measured 4 months after implant placement. Results: Primary stability showed a significant positive linear correlation with bone density (r = 0.471, p < 0.001) as well as with percentage of new bone formation (r = 0.567, p < 0.001). An average significant association of secondary stability with bone density (rs = 0.498, p < 0.001) and percentage of newly formed bone (r = 0.477, p < 0.001) was revealed. The mean values of primary stability in all three implant sizes, regarding the diameter of the implants, were similar (narrow 67.75; standard 66.78; wide 71.21) with no significant difference (p = 0.262). The same tendency was observed for secondary stability (narrow 73.83; standard 75.25; wide 74.93), with no significant difference (p = 0.277). Conclusions: The study revealed a high correlation between primary and secondary implant stability, and bone density, as well as with the percentage of vital bone formation. Implant length and diameter revealed no linear correlation with the implant stability.

Author(s):  
Yaniv Mayer ◽  
Ofir Ginesin ◽  
Hadar Zigdon-Giladi

Implant primary stability, which depends mainly on the amount and quality of bone, is important for implant survival. Socket preservation aims to reduce bone volumetric changes following tooth extraction. This animal study aims to examine whether preserving a ridge by using xenograft impairs the primary stability of the implant. Eighteen artificial bone defects were prepared in four sheep (5mmØ and 8mm length).  Defects were randomly grafted with xenografts: Bio-Oss (BO), Bioactive Bone (BB), or left for natural healing (control). After 8 weeks, bone biopsy was harvested and dental implants installed. During installation, peak insertion torque (IT) was measured by hand ratchet, and primary stability by the Osstell method. Histomorphometric analysis showed a higher percentage of new bone formation in the naturally healed defects compared to sites with xenograft (control 68.66 ± 4.5%, BB 48.75 ± 4.34%, BO 50.33 ± 4.0%). Connective tissue portion was higher in the BO and BB groups compared to control (44.25 ± 2.98%, 41 ± 6%, and 31.33 ± 4.5, p&lt;0.05, respectively). Residual grafting material was similar in BO and BB (7 ± 2.44%, 8.66 ± 2.1 %, respectively). Mean IT and ISQ values were not statistically different among the groups. A positive correlation was found between IT and ISQ (r=0.65, p=0.00). In conclusion, previously grafted defects with xenograft did not influence primary stability and implant insertion torque in delayed implant placement. These results may be attributed to a relatively high bone fill of the defect (~50%) two months after grafting.


2017 ◽  
Vol 43 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Yen-Ting Lin ◽  
Adrienne Hong ◽  
Ying-Chin Peng ◽  
Hsiang-Hsi Hong

Clinical decisions regarding the stability and osseointegration of mandibular implants positioned using the bone expansion techniques are conflicting and limited. The objective was to evaluate the stability of implants placed using 2 surgical techniques, selected according to the initial width of the mandibular posterior edentulous ridge, with D3 bone density, during a 12-week period. Fifty-eight implants in 33 patients were evaluated. Thirty-two implants in 24 patients were positioned using the osteotome expansion technique, and 26 fixtures in 17 patients were installed using the conventional drilling technique. The implant stability quotient values were recorded at weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 postsurgery and evaluated using analysis of variance, independent, and paired t tests. Calibrated according to the stability reading of a 3.3-mm diameter implant, the osteotome expansion group was associated with a lower bone density than the conventional group (64.96 ± 6.25 vs 68.98 ± 5.06, P = .011). The osteotome expansion group achieved a comparable primary stability (ISQb-0, P = .124) and greater increases in secondary stability (ISQb-12, P = .07) than did the conventional technique. A D3 quality ridge with mild horizontal deficiency is expandable by using the osteotome expansion technique. Although the 2 groups presented similar implant stability quotient readings during the study period, the osteotome expansion technique showed significant improvement in secondary stability. The healing patterns for these techniques are therefore inconsistent.


2020 ◽  
Vol 9 (2) ◽  
pp. 60-70 ◽  
Author(s):  
Zhijun Li ◽  
Masaki Arioka ◽  
Yindong Liu ◽  
Maziar Aghvami ◽  
Serdar Tulu ◽  
...  

Aims Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Methods Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation. Results Condensation significantly increased peri-implant bone density but it also produced higher strains at the interface between the bone and implant, which led to significantly more bone microdamage. Despite increased peri-implant bone density, condensation did not improve implant primary stability as measured by an in vivo lateral stability test. Ultimately, the condensed bone underwent resorption, which delayed the onset of new bone formation around the implant. Conclusion Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability or to new peri-implant bone formation. Cite this article: Bone Joint Res. 2020;9(2):60–70.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kinga Körmöczi ◽  
György Komlós ◽  
Petra Papócsi ◽  
Ferenc Horváth ◽  
Árpád Joób-Fancsaly

Abstract Background Various surface treatment options have been adopted with the aim to improve osseointegration, reducing the overall treatment time. Implant stability of early loaded implants with different modified surfaces was compared in the present study. Methods Patients were selected from the Department of Oro-Maxillofacial Surgery and Stomatology at Semmelweis University. Patients randomly received SA (alumina sandblasted and acid-etched), NH (bioabsorbable apatite nanocoating) or SLA (large-grit sandblasted and acid-etched) surface implants. Outcome measures were: implant success, implant stability, and periodontal parameters. The implant stability was measured at the time of implant placement (primary stability) and six weeks after (prothesis delivery, secondary stability). Osstell and Periotest were applied to take all the measurements. The primary and secondary stability were compared in the three study groups Finally the periimplant probing depth appearing after three months of loading was checked on 6 points around to the implant-supported prostheses. Shapiro–Wilk and Mann–Whitney tests were used for the comparison between the study groups. Results A total of 75 implants with different length and diameter were inserted into various positions. One implant failed spontaneously at the fourth week after implant placement. The survival rate was 98,7%. Comparing the primary and secondary stability values, the data were significantly improved in every groups. The difference was the highest in the NH group, however, this difference was not significant compared to the two other groups. Good periodontal parameters were experienced in all the tested implants, independently by the groups. Conclusions With the limitation of the present study, all the implants showed improved stability six weeks after implant placement. A trend of higher result was found for the NH group. Further studies with longer follow-up are needed to confirm this preliminary results. Trial registration: Current Controlled Trials ISRCTN13181677; the date of registration: 04/03/2021. Retrospectively registered.


Author(s):  
André Moreira ◽  
◽  
José Rosa ◽  
Filipe Freitas ◽  
Helena Francisco ◽  
...  

Objectives: To evaluate the influence of implant geometry and anatomical region on implant stability. Methods: A randomized controlled clinical trial was conducted on 45 patients, in whom a total of 79 implants were placed: 40 MIS C1 Implants and 39 MIS Seven Implants. The implant stability quotient was measured using resonance frequency analysis immediately after implant placement and 8 weeks later with an Osstell Mentor device. Results: 76 implants were analyzed. The implant stability quotient was statistically significantly higher for secondary stability than primary stability (68.7±8,6 vs. 65.2±10.3, respectively, p=0.023). Considering primary stability, no statistical differences were found between the implant lengths 8.0 mm, 10.0 mm, 11.0 mm, and 11.5 mm (67.9±7.6, 63.9±10, 57.2±11.1, and 66.4±11.3, respectively, p=0.312). The same was observed for secondary stability (68.4±9.4, 67.9±9.3, 74.7±1.5, and 69.2±7.9, respectively, p=0.504). Also, there were no statistically significant differences between the implant diameters 3.75 mm and 4.20 mm concerning primary stability (64.3±8.7 and 66.1±11.7 respectively, p=0.445) or secondary stability (68.8±8.2 and 68.7±9.1 respectively, p=0.930). Regarding implant design, a statistically significant difference was found only for secondary stability, favoring MIS Seven implants (p=0.048). The intraoral location was statistically significant for both primary and secondary stability, as these were higher on the anterior maxilla than the posterior maxilla and mandible (p<0.05). Conclusions: The diameter and length of the implants studied did not influence their stability. Implant design may influence secondary stability, whereas intraoral location has a relevant effect on primary and secondary stability.


Author(s):  
André Moreira ◽  
◽  
José Rosa ◽  
Filipe Freitas ◽  
Helena Francisco ◽  
...  

Objectives: To evaluate the influence of implant geometry and anatomical region on implant stability. Methods: A randomized controlled clinical trial was conducted on 45 patients, in whom a total of 79 implants were placed: 40 MIS C1 Implants and 39 MIS Seven Implants. The implant stability quotient was measured using resonance frequency analysis immediately after implant placement and 8 weeks later with an Osstell Mentor device. Results: 76 implants were analyzed. The implant stability quotient was statistically significantly higher for secondary stability than primary stability (68.7±8,6 vs. 65.2±10.3, respectively, p=0.023). Considering primary stability, no statistical differences were found between the implant lengths 8.0 mm, 10.0 mm, 11.0 mm, and 11.5 mm (67.9±7.6, 63.9±10, 57.2±11.1, and 66.4±11.3, respectively, p=0.312). The same was observed for secondary stability (68.4±9.4, 67.9±9.3, 74.7±1.5, and 69.2±7.9, respectively, p=0.504). Also, there were no statistically significant differences between the implant diameters 3.75 mm and 4.20 mm concerning primary stability (64.3±8.7 and 66.1±11.7 respectively, p=0.445) or secondary stability (68.8±8.2 and 68.7±9.1 respectively, p=0.930). Regarding implant design, a statistically significant difference was found only for secondary stability, favoring MIS Seven implants (p=0.048). The intraoral location was statistically significant for both primary and secondary stability, as these were higher on the anterior maxilla than the posterior maxilla and mandible (p<0.05). Conclusions: The diameter and length of the implants studied did not influence their stability. Implant design may influence secondary stability, whereas intraoral location has a relevant effect on primary and secondary stability.


2019 ◽  
Vol 31 (2) ◽  
pp. 44-51
Author(s):  
Ahmed M. Abbas ◽  
Salwan Y. Bede ◽  
Shefaa H. Alnumay

Background: Bone regeneration in dehiscence and fenestration defect can be improved with the use of platelet rich fibrin (PRF) that provides a scaffold for new bone regeneration. This study was conducted to assess the effectiveness of PRF as a graft material and membrane in dehiscence and fenestration defects. Materials and Methods: This prospective clinical study included patients who received dental implants that demonstrated peri-implant defects which were augmented using Leukocyte- PRF (L-PRF) or Advanced-PRF (A-PRF). Twenty four weeks postoperatively the defect resolution and the density of regenerated bone were assessed by CBCT and re-entry surgery. The assessment also included measurement of primary and secondary implant stability using Periotest® M, success rate and complication rate of the installed implants. Results: The mean overall intraoperative defect size was 29.44 (± 14.1) mm2, postoperatively it became 2.07 (± 3.6) mm2 with a statistically significant difference (p= < 0.0001). There was no significant difference between L-PRF and A-PRF. Defect resolution ranged from 80% to 100% with a mean of 95.7% (± 6.7%). Defects that showed complete resolution were significantly smaller in size (21.2± 7 mm2) than those that showed partial resolution (44.4± 11 mm2). The overall mean primary stability recorded was 2.9 (± 1.6) Periotest values (PTV) and overall mean secondary stability was -0.22 (±1.4) (P<0.0001).The overall mean HU of the newly formed peri-implant bone was 385.7 (± 77.4). Conclusions: PRF as the sole graft material for peri-implant defects results in complete defect resolution in small to moderate defects, larger defects may require the addition of bone substitute to achieve complete defect resolution.


Author(s):  
João Paulo do Vale Souza ◽  
Clóvis Lamartine de Moraes Melo Neto ◽  
Lucas Tavares Piacenza ◽  
Emily Vivianne Freitas da Silva ◽  
André Luiz de Melo Moreno ◽  
...  

Abstract Objectives This study aimed to assess the relation between the insertion torque and implant stability quotient (ISQ recorded immediately and 6 months after implant placement). Materials and Methods Twenty-five patients over the age of 18 years were selected for this study. One implant was placed per patient after tooth extraction. The implant site needed 15 mm in height and 8 mm in width. All implants had the same size (11.5 × 3.75 mm) and brand (Hexagonal Morse cone, DSP Biomedical). The insertion torque (Ncm) and resonance frequency analysis (ISQ value) (Osstell Mentor) were used to assess the primary stability (on the day of surgery). After 6 months, ISQ value was used to assess the secondary stability of each implant. Statistical Analysis The insertion torque data were correlated with ISQ measurements by using Pearson’s correlation. The significance level was 5%. Results There was a positive correlation between insertion torque and initial ISQ (correlation: 0.457; p = 0.022); however, no correlation was found between insertion torque and final ISQ (p = 0.308). Conclusion The present study demonstrated that there is a positive correlation between the insertion torque and the initial ISQ. Therefore, the higher the insertion torque, the higher the initial ISQ (or vice versa).


2013 ◽  
Vol 70 (6) ◽  
pp. 586-594 ◽  
Author(s):  
Zoran Vlahovic ◽  
Branko Mihailovic ◽  
Zoran Lazic ◽  
Mileta Golubovic

Background/Aim. Flapless implant surgery has become very important issue during recent years, mostly thanks to computerization of dentistry and software planning of dental implants placements. The aim of this study was to compare flap and flapless surgical techniques for implant placement through radiographic and radiofrequency analyses. Methods. The experiment was made in five domestic pigs. Nine weeks following domestic pigs teeth extraction, implants were placed, on the right side using surgical technique flap, and flapless on the left side. Digital dental Xrays were applied to determine primary dental implant stability quality (ISQ). At certain intervals, not later than three months, the experimental animals were sacrificed, and just before it, control X-rays were applied to measure dental implants stability. Results. Radiographic analysis showed that peri-implant bone resorption in the first 4 weeks following placement implants with flap and flapless surgical techniques was negligible. After the 3 months, mean value of peri-implant bone resorption of the implants placed using flap technique was 1.86 mm, and of those placed using flapless technique was 1.13 mm. In relation to the primary dental implant stability in the first and second week there was an expected decrease in ISQ values, but it was less expressed in the dental implants placed using the flapless technique. In the third week the ISQ values were increased in the dental implants placed by using both techniques, but the increase in flapless implant placement was higher (7.4 ISQ) than in flap implant placement (1.5 ISQ). The upward trend continued in a 4- week period, and after 3 months the dental implant stability values in the implants placed using flap technique were higher than the primary stability for 7.1 ISQ, and in the implants placed using flapless technique were higher comparing to the primary stability for 10.1 ISQ units. Conclusion. Based on the results of radiographic and resonance frequency analyses it can be concluded that the flapless technique in surgical implants placemat, leads to better results.


2014 ◽  
Vol 15 (2) ◽  
pp. 181-185 ◽  
Author(s):  
Lanka Mahesh ◽  
TV Narayan ◽  
Sagrika Shukla ◽  
Georgios Kostakis

ABSTRACT Aim To measure implant stability using periotest values of implants placed in sockets augmented with calcium phosphosilicate putty (CPS Putty) as compared with implant stability in naturally healed sockets. Materials and methods Twenty two sockets were implanted with CPS Putty immediately after extraction. The sockets were re-entered after a healing period at 5 to 6 months (average 5.3 months) for implant placement. Periotest values were recorded during implant insertion to assess primary stability. These were compared with the Periotest values of 26 implants placed in 22 patients, with naturally healed sockets. Result Periotest values were significantly lower in the grafted group, indicating better implant stability in sites grafted with CPS putty. Conclusion Implant stability seems to be significantly higher in sockets augmented using CPS putty when compared to nongrafted sites. This suggests that socket grafting with CPS putty may enhance the quality of available bone for implantation. How to cite this article Mahesh L, Narayan TV, Kostakis G, Shukla S. Periotest Values of Implants Placed in Sockets Augmented with Calcium Phosphosilicate Putty Graft: A Comparative Analysis against Implants Placed in Naturally Healed Sockets. J Contemp Dent Pract 2014;15(2):181-185.


Sign in / Sign up

Export Citation Format

Share Document