scholarly journals Effect of External Feedback on Bimanual Coordination Control in Patients with Parkinson’s Disease

Author(s):  
Eonho Kim ◽  
Chang-Ha Im ◽  
Yong-Gwan Song

Bimanual coordination control requires task-specific control of the spatial and temporal characteristics of the coupling of both upper limbs. The present study examined the effects of external feedback (i.e., auditory signal) on bimanual coordination movement during patients with Parkinson’s disease (PD). Twelve PD patients in advanced stages and 12 early stages of untreated PD patients, and 12 age-matched normal adults were instructed to perform bimanual coordination control using preference (1 Hz) and fast (1.75 Hz) speeds with metronome auditory cue. The results demonstrated that the advanced PD patients showed reduced synchronized bimanual coordination control during the anti-phase movement compared with other two groups. Moreover, the decreased movement accuracy was exhibited not only at the preference speed, but also more particularly at the fast speed with anti-phase rather than in-phase movement. This suggests that PD results in impairments in scaling the bimanual movement speed and amplitude of limb, and these deficits were more pronounced as a function of movement control speed. Overall, the current data provide evidence of the pathophysiology of the basal ganglia on the bimanual coordination movement.

2020 ◽  
Vol 26 (37) ◽  
pp. 4738-4746
Author(s):  
Mohan K. Ghanta ◽  
P. Elango ◽  
Bhaskar L. V. K. S.

Parkinson’s disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson’s disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.


2021 ◽  
Vol 11 (8) ◽  
pp. 1027
Author(s):  
Diego Santos García ◽  
Marta Blázquez-Estrada ◽  
Matilde Calopa ◽  
Francisco Escamilla-Sevilla ◽  
Eric Freire ◽  
...  

Parkinson’s disease (PD) is a chronic progressive and irreversible disease and the second most common neurodegenerative disease worldwide. In Spain, it affects around 120.000–150.000 individuals, and its prevalence is estimated to increase in the future. PD has a great impact on patients’ and caregivers’ lives and also entails a substantial socioeconomic burden. The aim of the present study was to examine the current situation and the 10-year PD forecast for Spain in order to optimize and design future management strategies. This study was performed using the modified Delphi method to try to obtain a consensus among a panel of movement disorders experts. According to the panel, future PD management will improve diagnostic capacity and follow-up, it will include multidisciplinary teams, and innovative treatments will be developed. The expansion of new technologies and studies on biomarkers will have an impact on future PD management, leading to more accurate diagnoses, prognoses, and individualized therapies. However, the socio-economic impact of the disease will continue to be significant by 2030, especially for patients in advanced stages. This study highlighted the unmet needs in diagnosis and treatment and how crucial it is to establish recommendations for future diagnostic and therapeutic management of PD.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ria Thomas ◽  
Elizabeth B. Moloney ◽  
Zachary K. Macbain ◽  
Penelope J. Hallett ◽  
Ole Isacson

AbstractLysosomal dysfunction is a central pathway associated with Parkinson’s disease (PD) pathogenesis. Haploinsufficiency of the lysosomal hydrolase GBA (encoding glucocerebrosidase (GCase)) is one of the largest genetic risk factors for developing PD. Deficiencies in the activity of the GCase enzyme have been observed in human tissues from both genetic (harboring mutations in the GBA gene) and idiopathic forms of the disease. To understand the mechanisms behind the deficits of lysosomal GCase enzyme activity in idiopathic PD, this study utilized a large cohort of fibroblast cells from control subjects and PD patients with and without mutations in the GBA gene (N370S mutation) (control, n = 15; idiopathic PD, n = 31; PD with GBA N370S mutation, n = 6). The current data demonstrates that idiopathic PD fibroblasts devoid of any mutations in the GBA gene also exhibit reduction in lysosomal GCase activity, similar to those with the GBA N370S mutation. This reduced GCase enzyme activity in idiopathic PD cells was accompanied by decreased expression of the GBA trafficking receptor, LIMP2, and increased ER retention of the GBA protein in these cells. Importantly, in idiopathic PD fibroblasts LIMP2 protein levels correlated significantly with GCase activity, which was not the case in control subjects or in genetic PD GBA N370S cells. In conclusion, idiopathic PD fibroblasts have decreased GCase activity primarily driven by altered LIMP2-mediated transport of GBA to lysosome and the reduced GCase activity exhibited by  the genetic GBA N370S derived PD fibroblasts occurs through a different mechanism.


Basal Ganglia ◽  
2017 ◽  
Vol 8 ◽  
pp. 4
Author(s):  
Nele Schmidt ◽  
Laura Paschen ◽  
Günther Deuschl ◽  
Karsten Witt

1990 ◽  
Vol 110 (2) ◽  
pp. 228-235 ◽  
Author(s):  
A. Beuter ◽  
J.G. Milton ◽  
C. Labrie ◽  
L. Glass ◽  
S. Gauthier

Sign in / Sign up

Export Citation Format

Share Document