scholarly journals Per- and Polyfluoroalkyl Substances (PFAS) in Integrated Crop–Livestock Systems: Environmental Exposure and Human Health Risks

Author(s):  
Gaurav Jha ◽  
Vanaja Kankarla ◽  
Everald McLennon ◽  
Suman Pal ◽  
Debjani Sihi ◽  
...  

Per- and polyfluoroalkyl substances (PFAS) are highly persistent synthetic organic contaminants that can cause serious human health concerns such as obesity, liver damage, kidney cancer, hypertension, immunotoxicity and other human health issues. Integrated crop–livestock systems combine agricultural crop production with milk and/or meat production and processing. Key sources of PFAS in these systems include firefighting foams near military bases, wastewater sludge and industrial discharge. Per- and polyfluoroalkyl substances regularly move from soils to nearby surface water and/or groundwater because of their high mobility and persistence. Irrigating crops or managing livestock for milk and meat production using adjacent waters can be detrimental to human health. The presence of PFAS in both groundwater and milk have been reported in dairy production states (e.g., Wisconsin and New Mexico) across the United States. Although there is a limit of 70 parts per trillion of PFAS in drinking water by the U.S. EPA, there are not yet regional screening guidelines for conducting risk assessments of livestock watering as well as the soil and plant matrix. This systematic review includes (i) the sources, impacts and challenges of PFAS in integrated crop–livestock systems, (ii) safety measures and protocols for sampling soil, water and plants for determining PFAS concentration in exposed integrated crop–livestock systems and (iii) the assessment, measurement and evaluation of human health risks related to PFAS exposure.

1997 ◽  
Vol 60 (11) ◽  
pp. 1426-1431 ◽  
Author(s):  
DAVID A. NEUMANN ◽  
JEFFERY A. FORAN

The resurgence of outbreaks of waterborne diseases in the United States underscores the need for quantitative methods for assessing the human health risks associated with various types of waterborne pathogens in diverse environments (e.g., drinking water, waste water, recreational water) under different exposure scenarios (e.g., ingestion, inhalation from aerosols). An expert panel developed a three-stage general framework for conducting risk assessments of waterborne pathogens. An initial problem formulation stage involving all stakeholders identifies the purpose of the risk assessment, the critical issues to be addressed, and how the results might be used to protect public health. The analysis characterizes both the exposure and the health effects. This compilation of quantitative and qualitative data, expert opinion, and other information yields a host/pathogen profile that explicitly identifies the assumptions and uncertainties associated with the profile. The final stage, risk characterization, states the likelihood and types and magnitude of effects likely to be observed in the exposed population under the expected exposure scenario, including all the inherent assumptions and uncertainties. This characterization will be used by risk managers and policy makers to reduce human health risks and by risk communication specialists to inform the public.


2013 ◽  
Vol 244-245 ◽  
pp. 225-239 ◽  
Author(s):  
Mojgan Yeganeh ◽  
Majid Afyuni ◽  
Amir-Hosein Khoshgoftarmanesh ◽  
Loghman Khodakarami ◽  
Manouchehr Amini ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 783
Author(s):  
Feifei Chen ◽  
Leihua Yao ◽  
Gang Mei ◽  
Yinsheng Shang ◽  
Fansheng Xiong ◽  
...  

Groundwater is a valuable water source for drinking and irrigation purposes in semiarid regions. Groundwater pollution may affect human health if it is not pretreated and provided for human use. This study investigated the hydrochemical characteristics driving groundwater quality for drinking and irrigation purposes and potential human health risks in the Xinzhou Basin, Shanxi Province, North China. More specifically, we first investigated hydrochemical characteristics using a descriptive statistical analysis method. We then classified the hydrochemical types and analyzed the evolution mechanisms of groundwater using Piper and Gibbs diagrams. Finally, we appraised the groundwater quality for drinking and irrigation purposes using the entropy water quality index (EWQI). We assessed the associated human health risks for different age and sex groups through drinking intake and dermal contact pathways. Overall, we found that (1) Ca-HCO3 and Ca·Mg-HCO3 were the dominant hydrochemical types and were mainly governed by rock weathering and water–rock interactions. (2) Based on the EWQI classifications, 67.74% of the groundwater samples were classified as medium quality and acceptable for drinking purpose. According to the values of sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and soluble sodium percentage (%Na), 90.32% of the samples were suitable for irrigation, while the remaining samples were unfit for irrigation because of the high salinity in the groundwater. (3) Some contaminants in the groundwater, such as NO3−, NO2− and F−, exceeded the standard limits and may cause potential risks to human health. Our work presented in this paper could establish reasonable management strategies for sustainable groundwater quality protection to protect public health.


Sign in / Sign up

Export Citation Format

Share Document