scholarly journals Land Use and Land Cover Change Modeling and Future Potential Landscape Risk Assessment Using Markov-CA Model and Analytical Hierarchy Process

2020 ◽  
Vol 9 (2) ◽  
pp. 134 ◽  
Author(s):  
Biswajit Nath ◽  
Zhihua Wang ◽  
Yong Ge ◽  
Kamrul Islam ◽  
Ramesh P. Singh ◽  
...  

Land use and land cover change (LULCC) has directly played an important role in the observed climate change. In this paper, we considered Dujiangyan City and its environs (DCEN) to study the future scenario in the years 2025, 2030, and 2040 based on the 2018 simulation results from 2007 and 2018 LULC maps. This study evaluates the spatial and temporal variations of future LULCC, including the future potential landscape risk (FPLR) area of the 2008 great (8.0 Mw) earthquake of south-west China. The Cellular automata–Markov chain (CA-Markov) model and multicriteria based analytical hierarchy process (MC-AHP) approach have been considered using the integration of remote sensing and GIS techniques. The analysis shows future LULC scenario in the years 2025, 2030, and 2040 along with the FPLR pattern. Based on the results of the future LULCC and FPLR scenarios, we have provided suggestions for the development in the close proximity of the fault lines for the future strong magnitude earthquakes. Our results suggest a better and safe planning approach in the Belt and Road Corridor (BRC) of China to control future Silk-Road Disaster, which will also be useful to urban planners for urban development in a safe and sustainable manner.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7010
Author(s):  
Ayub Mohammadi ◽  
Sadra Karimzadeh ◽  
Khalil Valizadeh Kamran ◽  
Masashi Matsuoka

Exact land cover inventory data should be extracted for future landscape prediction and seismic hazard assessment. This paper presents a comprehensive study towards the sustainable development of Tabriz City (NW Iran) including land cover change detection, future potential landscape, seismic hazard assessment and municipal performance evaluation. Landsat data using maximum likelihood (ML) and Markov chain algorithms were used to evaluate changes in land cover in the study area. The urbanization pattern taking place in the city was also studied via synthetic aperture radar (SAR) data of Sentinel-1 ground range detected (GRD) and single look complex (SLC). The age of buildings was extracted by using built-up areas of all classified maps. The logistic regression (LR) model was used for creating a seismic hazard assessment map. From the results, it can be concluded that the land cover (especially built-up areas) has seen considerable changes from 1989 to 2020. The overall accuracy (OA) values of the produced maps for the years 1989, 2005, 2011 and 2020 are 96%, 96%, 93% and 94%, respectively. The future potential landscape of the city showed that the land cover prediction by using the Markov chain model provided a promising finding. Four images of 1989, 2005, 2011 and 2020, were employed for built-up areas’ land information trends, from which it was indicated that most of the built-up areas had been constructed before 2011. The seismic hazard assessment map indicated that municipal zones of 1 and 9 were the least susceptible areas to an earthquake; conversely, municipal zones of 4, 6, 7 and 8 were located in the most susceptible regions to an earthquake in the future. More findings showed that municipal zones 1 and 4 demonstrated the best and worst performance among all zones, respectively.


2009 ◽  
Vol 21 ◽  
pp. 73-80 ◽  
Author(s):  
L. Menzel ◽  
J. Koch ◽  
J. Onigkeit ◽  
R. Schaldach

Abstract. Within the GLOWA Jordan River project, a first-time overview of the current and possible future land and water conditions of a major part of the Eastern Mediterranean region (ca. 100 000 km2) is given. First, we applied the hydrological model TRAIN to simulate current water availability (runoff and groundwater recharge) and irrigation water demand on a 1 km×1 km spatial resolution. The results demonstrate the scarcity of water resources in the study region, with extremely low values of water availability in the semi-arid and arid parts. Then, a set of four divergent scenarios on the future of water has been developed using a stakeholder driven approach. Relevant drivers for land-use/land-cover change were fed into the LandSHIFT.R model to produce land-use and land-cover maps for the different scenarios. These maps were used as input to TRAIN in order to generate scenarios of water availability and irrigation water demand for the region. For this study, two intermediate scenarios were selected, with projected developments ranging between optimistic and pessimistic futures (with regard to social and economic conditions in the region). Given that climate conditions remain unchanged, the simulations show both increases and decreases in water availability, depending on the future pattern of natural and agricultural vegetation and the related dominance of hydrological processes.


2020 ◽  
Vol 10 (19) ◽  
pp. 6714
Author(s):  
Xia Xu ◽  
Honglei Jiang ◽  
Lingfei Wang ◽  
Mengxi Guan ◽  
Tong Zhang ◽  
...  

Assessing the effects of future land use and land cover change (LULC) on ecological processes and functions is crucial for improving regional sustainability in arid and semiarid areas. Taking the Agro-Pastoral Transitional Zone of Northern China (APTZNC) as an example, four IPCC Special Report on Emissions Scenarios scenarios (Scenario of economic emphasis on a regional scale (A1B), Scenario of economic emphasis on a global scale (A2), Scenario of environmental protection on a regional scale (B1), Scenario of environmental protection on a global scale (B2)) were adopted in the study to analyze the influence of the future land use and land cover change on the net primary production (NPP), soil organic matter (SOM), soil total nitrogen (TN), and soil erosion (ERO) using the model of Terrestrial Ecosystem Simulator-Land use/land cover model (TES-LUC) linking ecological processes and land-use change dynamics. The results were analyzed from the perspectives of LULC components, LULC conversions, and landscape patterns under the four scenarios. The main results include the following: (1) Environmentally oriented scenarios (A1B and B1) experienced the conservation of forest and grassland; economically oriented scenarios (A2 and B2) were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. (2) The NPP and soil nutrients are the highest while the ERO is the lowest in the woodland; the trend in cultivated land is opposite to that in woodland; the grassland ecosystem function is relatively stable and could make an important contribution to effectively mitigate global climate change. (3) The general trend in NPP, SOM, and TN under the four scenarios is B1 > A1B > baseline (2010) > B2 > A2, and that in ERO is A2 > B2 > baseline (2010) > A1B > B1. (4) Trade-offs between ecosystem functions and the ecological effects of LULC can be evaluated and formulated into decision-making.


2021 ◽  
Author(s):  
RESHMA VILASAN ◽  
Vijay S Kapse

Abstract Floods are one of the frequent natural hazards occurring in Kerala because of the remarkably high annual rate of rainfall. The objective of this study is to prepare the flood susceptibility maps of the Ernakulam district by integrating remote sensing data, GIS, and analytical hierarchy process (AHP), and fuzzy-analytical hierarchy process methods. Factors such as slope angle, soil types (texture), land use/land cover, stream density, water ratio index, normalized difference built-up index, topographic wetness index, stream power index, aspect, sediment transport index have been selected. The area of the final maps is grouped into five flood susceptible zones, ranging from very low to very high. The major reasons for flood occurrence in Ernakulam district are the combined effect of multiple factors such as excess silting, reduction of stream width due to human intervention, and changes in land cover and land use pattern, lower slope, higher soil moisture content, lower stream capacity, and poor infiltration capacity of soils. The prepared map was validated using the receiver operating characteristic (ROC) curve method. The area under the ROC curve (AUC) values of 0.75 and 0.81 estimated by the ROC curve method for the AHP and F-AHP methods is considered acceptable and excellent, which confirms the prediction capability of the prepared maps. The very high susceptible zone constitutes around 19% of the district. This map is useful for land-use planners and policymakers to adopt strategies which will reduce the impact of flood hazard and damage in the future.


2011 ◽  
Vol 13 (5) ◽  
pp. 695-700
Author(s):  
Zhihua TANG ◽  
Xianlong ZHU ◽  
Cheng LI

Sign in / Sign up

Export Citation Format

Share Document