scholarly journals POI Mining for Land Use Classification: A Case Study

2020 ◽  
Vol 9 (9) ◽  
pp. 493 ◽  
Author(s):  
Renato Andrade ◽  
Ana Alves ◽  
Carlos Bento

The modern planning and management of urban spaces is an essential topic for smart cities and depends on up-to-date and reliable information on land use and the functional roles of the places that integrate urban areas. In the last few years, driven by the increased availability of geo-referenced data from social media, embedded sensors, and remote sensing images, various techniques have become popular for land use analysis. In this paper, we first highlight and discuss the different data types and methods usually adopted in this context, as well as their purposes. Then, based on a systematic state-of-the-art study, we focused on exploring the potential of points of interest (POIs) for land use classification, as one of the most common categories of crowdsourced data. We developed an application to automatically collect POIs for the study area, creating a dataset that was used to generate a large number of features. We used a ranking technique to select, among them, the most suitable features for classifying land use. As ground truth data, we used CORINE Land Cover (CLC), which is a solid and reliable dataset available for the whole European territory. It was used an artificial neural network (ANN) in different scenarios and our results reveal values of more than 90% for the accuracy and F-score in one experiment performed. Our analysis suggests that POI data have promising potential to characterize geographic spaces. The work described here aims to provide an alternative to the current methodologies for land use and land cover (LULC) classification, which are usually time-consuming and depend on expensive data types.

Author(s):  
S. A. R. Hosseini ◽  
H. Gholami ◽  
Y. Esmaeilpoor

Abstract. Land use/land cover (LULC) changes have become a central issue in current global change and sustainability research. Due to the large expanse of land change detection by the traditional methods is not sufficient and efficient; therefore, using of new methods such as remote sensing technology is necessary and vital This study evaluates LULC change in chabahar and konarak Coastal deserts, located in south of sistan and baluchestan province from 1988 to 2018 using Landsat images. Maximum likelihood classification were used to develop LULC maps. The change detection was executed using post-classification comparison and GIS. Then, taking ground truth data, the classified maps accuracy were assessed by calculating the Kappa coefficient and overall accuracy. The results for the time period of 1988–2018 are presented. Based on the results of the 30-year time period, vegetation has been decreased in area while urban areas have been developed. The area of saline and sandy lands has also increased.


Author(s):  
Ujjwala Khare ◽  
Prajakta Thakur

<p>The expansion of urban areas is common in metropolitan cities in India. Pune also has experienced rapid growth in the fringe areas of the city. This is mainly on account of the development of the Information Technology (IT) Parks. These IT Parks have been established in different parts of Pune city. They include Hinjewadi, Kharadi, Talwade and others like the IT parks in Magarpatta area. The IT part at Talwade is located to close to Pune Nashik Highway has had an impact on the villages located around it. The surrounding area includes the villages of Talwade, Chikhli, Nighoje, Mahalunge, Khalumbre and Sudumbre.</p> <p>The changes in the land use that have occurred in areas surrounding Talwade IT parks during the last three decades have been studied by analyzing the LANDSAT images of different time periods. The satellite images of the 1992, 2001 and 2011 were analyzed to detect the temporal changes in the land use and land cover.</p> <p>This paper attempts to study the changes in land use / land cover which has taken place in these villages in the last two decades. Such a study can be done effectively with the help of remote sensing and GIS techniques. The tertiary sector has experienced a rapid growth especially during the last decade near the IT Park. The occupation structure of these villages is also related to the changes due to the development of the IT Park.</p> <p>The land use of study area has been analysed using the ground truth applied to the satellite images at decadal interval. Using the digital image processing techniques, the satellite images were then classified and land use / land cover maps were derived. The results show that the area under built-up land has increased by around 14 per cent in the last 20 years. On the contrary, the land under agriculture, barren, pasture has decreased significantly.</p>


2020 ◽  
Vol 12 (1) ◽  
pp. 9-12
Author(s):  
Arjun G. Koppad ◽  
Syeda Sarfin ◽  
Anup Kumar Das

The study has been conducted for land use and land cover classification by using SAR data. The study included examining of ALOS 2 PALSAR L- band quad pol (HH, HV, VH and VV) SAR data for LULC classification. The SAR data was pre-processed first which included multilook, radiometric calibration, geometric correction, speckle filtering, SAR Polarimetry and decomposition. For land use land cover classification of ALOS-2-PALSAR data sets, the supervised Random forest classifier was used. Training samples were selected with the help of ground truth data. The area was classified under 7 different classes such as dense forest, moderate dense forest, scrub/sparse forest, plantation, agriculture, water body, and settlements. Among them the highest area was covered by dense forest (108647ha) followed by horticulture plantation (57822 ha) and scrub/Sparse forest (49238 ha) and lowest area was covered by moderate dense forest (11589 ha).   Accuracy assessment was performed after classification. The overall accuracy of SAR data was 80.36% and Kappa Coefficient was 0.76.  Based on SAR backscatter reflectance such as single, double, and volumetric scattering mechanism different land use classes were identified.


Author(s):  
J. R. Bergado ◽  
C. Persello ◽  
A. Stein

Abstract. Updated information on urban land use allows city planners and decision makers to conduct large scale monitoring of urban areas for sustainable urban growth. Remote sensing data and classification methods offer an efficient and reliable way to update such land use maps. Features extracted from land cover maps are helpful on performing a land use classification task. Such prior information can be embedded in the design of a deep learning based land use classifier by applying a multitask learning setup—simultaneously solving a land use and a land cover classification task. In this study, we explore a fully convolutional multitask network to classify urban land use from very high resolution (VHR) imagery. We experimented with three different setups of the fully convolutional network and compared it against a baseline random forest classifier. The first setup is a standard network only predicting the land use class of each pixel in the image. The second setup is a multitask network that concatenates the land use and land cover class labels in the same output layer of the network while the other setup accept as an input the land cover predictions, predicted by a subpart of the network, concatenated to the original input image patches. The two deep multitask networks outperforms the other two classifiers by at least 30% in average F1-score.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jane Ferah Gondwe ◽  
Sun Li ◽  
Rodger Millar Munthali

Blantyre City has experienced a wide range of changes in land use and land cover (LULC). This study used Remote Sensing (RS) to detect and quantify LULC changes that occurred in the city throughout a twenty-year study period, using Landsat 7 Enhanced Thematic Mapper (ETM+) images from 1999 and 2010 and Landsat 8 Operational Land Imager (OLI) images from 2019. A supervised classification method using an Artificial Neural Network (ANN) was used to classify and map LULC types. The kappa coefficient and the overall accuracy were used to ascertain the classification accuracy. Using the classified images, a postclassification comparison approach was used to detect LULC changes between 1999 and 2019. The study revealed that built-up land and agricultural land increased in their respective areas by 28.54 km2 (194.81%) and 35.80 km2 (27.16%) with corresponding annual change rates of 1.43 km·year−1 and 1.79 km·year−1. The area of bare land, forest land, herbaceous land, and waterbody, respectively, decreased by 0.05%, 90.52%, 71.67%, and 6.90%. The LULC changes in the study area were attributed to urbanization, population growth, social-economic growth, and climate change. The findings of this study provide information on the changes in LULC and driving factors, which Blantyre City authorities can utilize to develop sustainable development plans.


2020 ◽  
pp. 131
Author(s):  
D.A. Vélez-Alvarado ◽  
J. Álvarez-Mozos

<p class="p1">Management practices adopted in protected natural areas often ignore the relevance of the territory surrounding the actual protected land (buffer area). These areas can be the source of impacts that threaten the protected ecosystems. This paper reports a case study where a time series of Sentinel-1 imagery was used to classify the land-use/land-cover and to evaluate its change between 2015 and 2018 in the buffer area around the Manglares Churute Ecological Reserve (REMCh) in Ecuador. Sentinel-1 scenes were processed and ground-truth data were collected consisting of samples of the main land-use/land-cover classes in the region. Then, a Random Forests (RF) classification algorithm was built and optimized, following a five-fold cross validation scheme using the training dataset (70% of the ground truth). The remaining 30% was used for validation, achieving an Overall Accuracy of 84%, a Kappa coefficient of 0.8 and successful class performance metrics for the main crops and land use classes. Results were poorer for heterogeneous and minor classes, nevertheless the performance of the classification was deemed sufficient for the targeted change analysis. Between 2015 and 2018, an increase in the area covered by intensive land uses was evidenced, such as shrimp farms and sugarcane, which replaced traditional crops (mainly rice and banana). Even though such changes only affected the land area around the natural reserve, they might affect its water quality due to the use of fertilizers and pesticides that easily. Therefore, it is recommended that these buffer areas around natural protected areas be taken into account when designing adequate environmental protection measures and polices.</p>


Author(s):  
Jukka Heikkonen ◽  
Aristide Varfis

This paper proposes a method for remote sensing based land cover/land use classification of urban areas. The method consists of the following four main stages: feature extraction, feature coding, feature selection and classification. In the feature extraction stage, statistical, textural and Gabor features are computed within local image windows of different sizes and orientations to provide a wide variety of potential features for the classification. Then the features are encoded and normalized by means of the Self-Organizing Map algorithm. For feature selection a CART (Classification and Regression Trees) based algorithm was developed to select a subset of features for each class within the classification scheme at hand. The selected subset of features is not attached to any specific classifier. Any classifier capable of representing possible skewed and multi-modal feature distributions can be employed, such as multi-layer perceptron (MLP) or k-nearest neighbor (k-NN). The paper reports experiments in land cover/land use classification with the Landsat TM and ERS-1 SAR images gathered over the city of Lisbon to show the potentials of the proposed method.


Author(s):  
A. G. Koppad ◽  
B. S. Janagoudar

The study was conducted in Uttara Kannada districts during the year 2012&amp;ndash;2014. The study area lies between 13.92&amp;deg;&amp;thinsp;N to 15.52&amp;deg;&amp;thinsp;N latitude and 74.08&amp;deg;&amp;thinsp;E to 75.09&amp;deg;&amp;thinsp;E longitude with an area of 10,215&amp;thinsp;km<sup>2</sup>. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32&amp;thinsp;% (6468.70&amp;thinsp;sq&amp;thinsp;km) followed by agriculture 12.88&amp;thinsp;% (1315.31&amp;thinsp;sq.&amp;thinsp;km), sparse forest 10.59&amp;thinsp;% (1081.37&amp;thinsp;sq.&amp;thinsp;km), open land 6.09&amp;thinsp;% (622.37&amp;thinsp;sq.&amp;thinsp;km), horticulture plantation and least was forest plantation (1.07&amp;thinsp;%). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non-vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.


Author(s):  
A. G. Koppad ◽  
B. S. Janagoudar

The study was conducted in Uttara Kannada districts during the year 2012&amp;ndash;2014. The study area lies between 13.92&amp;deg;&amp;thinsp;N to 15.52&amp;deg;&amp;thinsp;N latitude and 74.08&amp;deg;&amp;thinsp;E to 75.09&amp;deg;&amp;thinsp;E longitude with an area of 10,215&amp;thinsp;km<sup>2</sup>. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32&amp;thinsp;% (6468.70&amp;thinsp;sq&amp;thinsp;km) followed by agriculture 12.88&amp;thinsp;% (1315.31&amp;thinsp;sq.&amp;thinsp;km), sparse forest 10.59&amp;thinsp;% (1081.37&amp;thinsp;sq.&amp;thinsp;km), open land 6.09&amp;thinsp;% (622.37&amp;thinsp;sq.&amp;thinsp;km), horticulture plantation and least was forest plantation (1.07&amp;thinsp;%). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Sign in / Sign up

Export Citation Format

Share Document