scholarly journals Methylsulfonylmethane Induces p53 Independent Apoptosis in HCT-116 Colon Cancer Cells

2016 ◽  
Vol 17 (7) ◽  
pp. 1123 ◽  
Author(s):  
Arzu Karabay ◽  
Asli Koc ◽  
Tulin Ozkan ◽  
Yalda Hekmatshoar ◽  
Asuman Sunguroglu ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 572-585
Author(s):  
Darren Yi Sern Low ◽  
Camille Keisha Mahendra ◽  
Janarthanan Supramaniam ◽  
Loh Teng Hern Tan ◽  
Learn Han Lee ◽  
...  

Abstract In this study, ultrasonically driven biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Swietenia macrophylla seed ethyl acetate fraction (SMEAF) has been reported. X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) analyses confirmed the presence of a pure hexagonal wurtzite structure of ZnO. Field emission scanning electron microscope images revealed the formation of uniquely identifiable uniform rice-shaped biologically synthesized ZnOSMEAF particles. The particle sizes of the biosynthesized NPs ranged from 262 to 311 nm. The underlying mechanisms for the biosynthesis of ZnOSMEAF under ultrasound have been proposed based on FTIR and XRD results. The anticancer activity of the as-prepared ZnOSMEAF was investigated against HCT-116 human colon cancer cell lines via methyl thiazolyl tetrazolium assay. ZnOSMEAF exhibited significant anticancer activity against colon cancer cells with higher potency than ZnO particles prepared using the chemical method and SMEAF alone. Exposure of HCT-116 colon cancer cells to ZnOSMEAF promoted a remarkable reduction in cell viability in all the tested concentrations. This study suggests that green sonochemically induced ZnO NPs using medicinal plant extract could be a potential anticancer agent for biomedical applications.


2016 ◽  
Vol 8 (3) ◽  
pp. 89 ◽  
Author(s):  
Raja Ratna Reddy Yakkanti ◽  
P Chandra Sekhar ◽  
K Bharath Nandhan Reddy ◽  
S Ramamoorthy ◽  
S Ranga Suresh ◽  
...  

<p>D-Limonene is a dietary monoterpene with significant anticancer activity against many cancer types in preclinical and clinical studies. The study is designed to investigate synergistic anticancer effects of limonene and BEZ235 combination in COLO-320 and HCT-116 colon cancer cells. Cells were treated with both the drugs alone and in combination and the effects on cell viability; cell migration and clonogenic potential were examined. Results show that both drugs exhibited dose and time dependant cytotoxicity on the cell lines tested. CompuSyn analysis of the drug combination effects revealed the strong synergistic interaction of the combination. Our results also indicate that COLO-320 cells were more sensitive for anticancer effects of the drugs than HCT-116 cells. The presence of Ras and PI3K mutations in HCT-116 cells could possibly be one of the main reasons for the observed outcome as compared to the wild type expressions of them in COLO-320 cells.</p>


2010 ◽  
Author(s):  
Lloyd F. Alfonso ◽  
Raghavender Chivukula ◽  
Srinivasan Marimuthu ◽  
Jayarama B. Gunaje

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Huiming Deng ◽  
Ling Huang ◽  
Zhongkai Liao ◽  
Mi Liu ◽  
Qiang Li ◽  
...  

AbstractItraconazole is as an antifungal medication used to treat systemic fungal infections. Recently, it has been reported to be effective in suppressing tumor growth by inhibiting the Hedgehog signaling pathway and angiogenesis. In the present study, we investigated whether itraconazole induces autophagy-mediated cell death of colon cancer cells through the Hedgehog signaling pathway. Cell apoptosis and cell cycle distribution of the colon cancer cell lines SW-480 and HCT-116 were detected by flow cytometry and terminal TUNEL assay. Autophagy and signal proteins were detected by western blotting and cell proliferation-associated antigen Ki-67 was measured using immunohistochemistry. The images of autophagy flux and formation of autophagosomes were observed by laser scanning confocal and/or transmission electron microscopy. Colon cancer cell xenograft mouse models were also established. Itraconazole treatment inhibited cell proliferation via G1 cell cycle arrest as well as autophagy-mediated apoptosis of SW-480 and HCT-116 colon cancer cells. In addition, the Hedgehog pathway was found to be involved in activation of itraconazole-mediated autophagy. After using the Hedgehog agonist recombinant human Sonic Hedgehog (rhshh), itraconazole could counteract the activation of rhshh. Moreover, treatment with itraconazole produced significant cancer inhibition in HCT-116-bearing mice. Thus, itraconazole may be a potential and effective therapy for the treatment of colon cancer.


2018 ◽  
Vol 211 ◽  
pp. 295-310 ◽  
Author(s):  
Neha Sharma ◽  
Ashok Kumar ◽  
P.R. Sharma ◽  
Arem Qayum ◽  
Shashank K. Singh ◽  
...  

2008 ◽  
Vol 84 (3) ◽  
pp. 230-233 ◽  
Author(s):  
Jane L. Watson ◽  
Richard Hill ◽  
Patrick W. Lee ◽  
Carman A. Giacomantonio ◽  
David W. Hoskin

Sign in / Sign up

Export Citation Format

Share Document