scholarly journals Cell Imaging Counting as a Novel Ex Vivo Approach for Investigating Drug-Induced Hepatotoxicity in Zebrafish Larvae

2017 ◽  
Vol 18 (2) ◽  
pp. 356 ◽  
Author(s):  
Xuan-Bac Nguyen ◽  
Stanislav Kislyuk ◽  
Duc-Hung Pham ◽  
Angela Kecskés ◽  
Jan Maes ◽  
...  
2021 ◽  
Vol 72 ◽  
pp. 105099
Author(s):  
Lorena Polloni ◽  
Fernanda Van Petten Vasconcelos Azevedo ◽  
Samuel Cota Teixeira ◽  
Eloá Moura ◽  
Tassia Rafaela Costa ◽  
...  

Author(s):  
Sébastien Baekelandt ◽  
Valérie Cornet ◽  
Syaghalirwa.N.M. Mandiki ◽  
Lambert Jérôme ◽  
Dubois Mickaël ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Johanna Simon ◽  
Gabor Kuhn ◽  
Michael Fichter ◽  
Stephan Gehring ◽  
Katharina Landfester ◽  
...  

Understanding the behavior of nanoparticles upon contact with a physiological environment is of urgent need in order to improve their properties for a successful therapeutic application. Most commonly, the interaction of nanoparticles with plasma proteins are studied under in vitro conditions. However, this has been shown to not reflect the complex situation after in vivo administration. Therefore, here we focused on the investigation of magnetic nanoparticles with blood proteins under in vivo conditions. Importantly, we observed a radically different proteome in vivo in comparison to the in vitro situation underlining the significance of in vivo protein corona studies. Next to this, we found that the in vivo corona profile does not significantly change over time. To mimic the in vivo situation, we established an approach, which we termed “ex vivo” as it uses whole blood freshly prepared from an animal. Overall, we present a comprehensive analysis focusing on the interaction between nanoparticles and blood proteins under in vivo conditions and how to mimic this situation with our ex vivo approach. This knowledge is needed to characterize the true biological identity of nanoparticles.


Lab on a Chip ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 104-114 ◽  
Author(s):  
Min Jung Kim ◽  
Su Chul Lee ◽  
Sukdeb Pal ◽  
Eunyoung Han ◽  
Joon Myong Song

2010 ◽  
Vol 196 ◽  
pp. S232-S233
Author(s):  
P. Pinton ◽  
D. Tsybulskyy ◽  
B. Joly ◽  
N. Bourges-Abella ◽  
I.P. Oswald ◽  
...  

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Shannon N Tessier ◽  
Luciana Da Silveira Cavalcante ◽  
Casie A Pendexter ◽  
Stephanie E Cronin ◽  
Reinier J de Vries ◽  
...  

Cardiac transplantation is the only curative therapy for patients with end-stage heart disease; however, there is a severe shortage of viable donor organs. Heart transplantation faces many interwoven challenges, including both biological factors and research limitations. For example, ischemia-reperfusion injury plays a role in early graft dysfunction and is associated with rejection episodes in heart transplantation. Moreover, experimental transplantation relies heavily on animal studies that are laborious and expensive, prohibiting the discovery of novel, bold solutions. We propose that the zebrafish, Danio rerio , would be a valuable tool for the field since it’s amenable to high-throughput screens, captures the complex structure of organs, and offers a suite of tools to monitor the biology of cardiac injury. Here, we develop a new subzero heart preservation method by strategically leveraging animal models from zebrafish to mammalian hearts. Using zebrafish larvae, we screened for agents which preserve hearts at -10°C. As a result of these screens, we identified promising preservative cocktails which restored heartbeat in 82% of larvae immediately post-recovery. Next, we excised adult zebrafish hearts and developed methods to mimic the ex vivo handling practices of hearts destined for transplant using a heart-on-a-plate assay. Using this assay, we carried forward promising agents identified in our initial zebrafish larvae screen to isolated adult zebrafish hearts that were cooled to -10°C and held for up to 24 hours. After rewarming, heart rate was restored and metabolic rate of zebrafish hearts was like time-matched controls (0.213 ± 0.047 and 0.275 ± 0.060, respectively, p = 0.200). Finally, we report our preliminary scale-up efforts whereby rodent hearts are stored for up to 24 hours at -10°C and viability were assessed by the TUNEL assay. The data shows high viability of cardiomyocytes post-preservation, as compared to controls. In summary, we present data to illustrate our efforts in leveraging the zebrafish to aid new discoveries in subzero heart preservation. Similar efforts to model heart transplantation in zebrafish may provide a different vantage point and enable us to make advances faster.


2020 ◽  
Vol 11 (28) ◽  
pp. 7329-7334
Author(s):  
Maria L. Odyniec ◽  
Sang-Jun Park ◽  
Jordan E. Gardiner ◽  
Emily C. Webb ◽  
Adam C. Sedgwick ◽  
...  

In this work, we have developed an ESIPT benzimidazole-based platform for the two-photon cell imaging of ONOO− and a potential ONOO−-activated theranostic scaffold.


Sign in / Sign up

Export Citation Format

Share Document