ex vivo autoradiography
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmi Puuvuori ◽  
Johanna Rokka ◽  
Per-Ola Carlsson ◽  
Zhanchun Li ◽  
Jonas Eriksson ◽  
...  

AbstractBiomarkers for the measurement of islets of Langerhans could help elucidate the etiology of diabetes. Synaptic vesicle glycoprotein 2 A (SV2A) is a potential marker reported to be localized in the endocrine pancreas. [11C]UCB-J is a novel positron emission tomography (PET) radiotracer that binds to SV2A and was previously evaluated as a synaptic marker in the central nervous system. Here, we evaluated whether [11C]UCB-J could be utilized as a PET tracer for the islets of Langerhans in the pancreas by targeting SV2A. The mRNA transcription of SV2A was evaluated in human isolated islets of Langerhans and exocrine tissue. In vitro autoradiography was performed on pancreas and brain sections from rats and pigs, and consecutive sections were immunostained for insulin. Sprague–Dawley rats were examined with PET-MRI and ex vivo autoradiography at baseline and with administration of levetiracetam (LEV). Similarly, pigs were examined with dynamic PET-CT over the pancreas and brain after administration of [11C]UCB-J at baseline and after pretreatment with LEV. In vivo radioligand binding was assessed using a one-compartment tissue model. The mRNA expression of SV2A was nearly 7 times higher in endocrine tissue than in exocrine tissue (p < 0.01). In vitro autoradiography displayed focal binding of [11C]UCB-J in the pancreas of rats and pigs, but the binding pattern did not overlap with the insulin-positive areas or with ex vivo autoradiography. In rats, pancreas binding was higher than that in negative control tissues but could not be blocked by LEV. In pigs, the pancreas and brain exhibited accumulation of [11C]UCB-J above the negative control tissue spleen. While brain binding could be blocked by pretreatment with LEV, a similar effect was not observed in the pancreas. Transcription data indicate SV2A to be a valid target for imaging islets of Langerhans, but [11C]UCB-J does not appear to have sufficient sensitivity for this application.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rebecca Faresjö ◽  
Gillian Bonvicini ◽  
Xiaotian T. Fang ◽  
Ximena Aguilar ◽  
Dag Sehlin ◽  
...  

Abstract Background Transferrin receptor (TfR1) mediated enhanced brain delivery of antibodies have been studied extensively in preclinical settings. However, the brain pharmacokinetics, i.e. brain entry, distribution and elimination are still not fully understood for this class of antibodies. The overall aim of the study was to compare the brain pharmacokinetics of two BBB-penetrating bispecific antibodies of different size (210 vs 58 kDa). Specifically, we wanted to investigate if the faster systemic clearance of the smaller non-IgG antibody di-scFv3D6-8D3, in comparison with the IgG-based bispecific antibody mAb3D6-scFv8D3, was also reflected in the brain. Methods Wild-type (C57/Bl6) mice were injected with 125I-iodinated ([125I]) mAb3D6-scFv8D3 (n = 46) or [125I]di-scFv3D6-8D3 (n = 32) and euthanized 2, 4, 6, 8, 10, 12, 16, or 24 h post injection. Ex vivo radioactivity in whole blood, peripheral organs and brain was measured by γ-counting. Ex vivo autoradiography and nuclear track emulsion were performed on brain sections to investigate brain and parenchymal distribution. Capillary depletion was carried out at 2, 6, and 24 h after injection of [125I]mAb3D6-scFv8D3 (n = 12) or [125I]di-scFv3D6-8D3 (n = 12), to estimate the relative levels of radiolabelled antibody in brain capillaries versus brain parenchyma. In vitro binding kinetics for [125I]mAb3D6-scFv8D3 or [125I]di-scFv3D6-8D3 to murine TfR were determined by LigandTracer. Results [125I]di-scFv3D6-8D3 showed faster elimination from blood, lower brain Cmax, and Tmax, a larger parenchymal-to-capillary concentration ratio, and a net elimination from brain at an earlier time point after injection compared with the larger [125I]mAb3D6-scFv8D3. However, the elimination rate from brain did not differ between the antibodies. The study also indicated that [125I]di-scFv3D6-8D3 displayed lower avidity than [125I]mAb3D6-scFv8D3 towards TfR1 in vitro and potentially in vivo, at least at the BBB. Conclusion A smaller size and lower TfR1 avidity are likely important for fast parenchymal delivery, while elimination of brain-associated bispecific antibodies may not be dependent on these characteristics.


2021 ◽  
Vol 22 (Supplement_3) ◽  
Author(s):  
A Hess ◽  
LBN Langer ◽  
TL Ross ◽  
FM Bengel ◽  
JT Thackeray

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Deutsche Forschungsgemeinschaft (DFG) Introduction Balanced myocardial tissue inflammation following acute myocardial infarction (MI) is needed for optimal cardiac repair. Macrophages contribute to wound healing, but may also be deleterious. Purpose We investigated the impact of macrophage depletion on early cardiac inflammation and later functional outcome in two models of MI with variable transmurality. Methods C57BL/6N mice received clodronate-liposomes for macrophage depletion (n = 49) or control PBS-liposomes (n = 23). After 24h, mice underwent permanent occlusion (PO) or transient ischemia-reperfusion (I/R, 60min) of the left coronary artery or sham surgery. Cardiac inflammation was assessed on MI + 1d, 3d, and 7d by CXCR4-targeted PET/CT using 68Ga-pentixafor. 99mTc-sestamibi SPECT/CT and cardiac magnetic resonance (CMR) calculated infarct sizes and left ventricular (LV) function at 1wk and 6wks. 18F-NaF PET/CT measured tissue microcalcification at 4wks. Imaging signals were validated by ex vivo autoradiography and immunohistochemistry. Results Clodronate macrophage depletion did not affect infarct size compared to PBS, but perfusion defects at 6wks were significantly larger after PO compared to I/R (%LV, 32 ± 11 vs 14 ± 10, p = 0.01). In both models, infarct CXCR4 expression was higher after macrophage depletion vs PBS at all timepoints (%injected dose (ID)/g; d3: PO: 1.4 ± 0.2 vs 0.9 ± 0.1; I/R: 1.4 ± 0.2 vs 1.0 ± 0.02; p &lt; 0.05), and confirmed by ex vivo autoradiography. Immunostaining demonstrated fewer macrophages and higher neutrophil content within the myocardium after macrophage depletion vs PBS at 1d, 3d, and 7d post-MI. Acute LV rupture after PO was more frequent in macrophage-depleted than PBS mice (37% vs 17%). Conversely, surviving PO mice showed a similarly impaired ejection fraction (EF) after macrophage depletion vs PBS at 6wks (%, 32 ± 9 vs 32 ± 11, p = 0.84). No acute LV rupture was observed after I/R, but macrophage depletion led to worse EF (%, 42 ± 11 vs 54 ± 3, p = 0.1). Macrophage-depleted mice exhibited a dense intracavity thrombus adherent to the infarct wall after either injury, as visualized on CMR at 1wk. 18F-NaF PET identified active calcification localized to the thrombus region 4wks after MI, which was colocalized to CT opaque regions at 6wks. Conclusion Macrophage depletion impairs cardiac repair via several mechanisms including neutrophil-dominated inflammation, LV thrombus formation and tissue calcification. This observation underscores the requirement of macrophages for effective healing and may explain adverse response to broad anti-inflammatory therapy in myocardial ischemia.


2021 ◽  
Vol 9 (1) ◽  
pp. e002083
Author(s):  
Elin Manell ◽  
Emmi Puuvuori ◽  
Anna Svensson ◽  
Irina Velikyan ◽  
Gry Hulsart-Billström ◽  
...  

IntroductionGlucagon-like peptide-1 (GLP-1) increases insulin secretion from pancreatic beta-cells and GLP-1 receptor (GLP-1R) agonists are widely used as treatment for type 2 diabetes mellitus. Studying occupancy of the GLP-1R in various tissues is challenging due to lack of quantitative, repeatable assessments of GLP-1R density. The present study aimed to describe the quantitative distribution of GLP-1Rs and occupancy by endogenous GLP-1 during oral glucose tolerance test (OGTT) in pigs, a species that is used in biomedical research to model humans.Research design and methodsGLP-1R distribution and occupancy were measured in pancreas and gastrointestinal tract by ex vivo autoradiography using the GLP-1R-specific radioligand 177Lu-exendin-4 in two groups of pigs, control or bottle-fed an oral glucose load. Positron emission tomography (PET) data from pigs injected with 68Ga-exendin-4 in a previous study were used to retrieve data on biodistribution of GLP-1R in the gastrointestinal tract.ResultsHigh homogenous uptake of 177Lu-exendin-4 was found in pancreas, and even higher uptake in areas of duodenum. Low uptake of 177Lu-exendin-4 was found in stomach, jejunum, ileum and colon. During OGTT, there was no increase in plasma GLP-1 concentrations and occupancy of GLP-1Rs was low. The ex vivo autoradiography results were highly consistent with to the biodistribution of 68Ga-exendin-4 in pigs scanned by PET.ConclusionWe identified areas with similarities as well as important differences regarding GLP-1R distribution and occupancy in pigs compared with humans. First, there was strong ligand binding in the exocrine pancreas in islets. Second, GLP-1 secretion during OGTT is minimal and GLP-1 might not be an important incretin in pigs under physiological conditions. These findings offer new insights on the relevance of porcine diabetes models.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dorien Glorie ◽  
Jeroen Verhaeghe ◽  
Alan Miranda ◽  
Stef De Lombaerde ◽  
Sigrid Stroobants ◽  
...  

Abstract Background Currently, the evidence on synaptic abnormalities in neuropsychiatric disorders—including obsessive–compulsive disorder (OCD)—is emerging. The newly established positron emission tomography (PET) ligand ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) provides the opportunity to visualize synaptic density changes in vivo, by targeting the synaptic vesicle protein 2A (SV2A). Here, we aim to evaluate such alterations in the brain of the SAP90/PSD-95-associated protein 3 (Sapap3) knockout (ko) mouse model, showing an abnormal corticostriatal neurotransmission resulting in OCD-like behaviour. Methods Longitudinal [11C]UCB-J µPET/CT scans were acquired in Sapap3 ko and wildtype (wt) control mice (n = 9/group) to study SV2A availability. Based on the Logan reference method, we calculated the volume of distribution (VT(IDIF)) for [11C]UCB-J. Both cross-sectional (wt vs. ko) and longitudinal (3 vs. 9 months) volume-of-interest-based statistical analysis and voxel-based statistical parametric mapping were performed. Both [11C]UCB-J ex vivo autoradiography and [3H]UCB-J in vitro autoradiography were used for the validation of the µPET data. Results At the age of 3 months, Sapap3 ko mice are already characterized by a significantly lower SV2A availability compared to wt littermates (i.a. cortex − 12.69%, p < 0.01; striatum − 14.12%, p < 0.001, thalamus − 13.11%, p < 0.001, and hippocampus − 12.99%, p < 0.001). Healthy ageing in control mice was associated with a diffuse and significant (p < 0.001) decline throughout the brain, whereas in Sapap3 ko mice this decline was more confined to the corticostriatal level. A strong linear relationship (p < 0.0001) was established between the outcome parameters of [11C]UCB-J µPET and [11C]UCB-J ex vivo autoradiography, while such relationship was absent for [3H]UCB-J in vitro autoradiography. Conclusions [11C]UCB-J PET is a potential marker for synaptic density deficits in the Sapap3 ko mouse model for OCD, parallel to disease progression. Our data suggest that [11C]UCB-J ex vivo autoradiography is a suitable proxy for [11C]UCB-J PET data in mice.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Marc Y. Stevens ◽  
Haley C. Cropper ◽  
Katherine L. Lucot ◽  
Aisling M. Chaney ◽  
Kendra J. Lechtenberg ◽  
...  

Abstract Background B cells play a central role in multiple sclerosis (MS) through production of injurious antibodies, secretion of pro-inflammatory cytokines, and antigen presentation. The therapeutic success of monoclonal antibodies (mAbs) targeting B cells in some but not all individuals suffering from MS highlights the need for a method to stratify patients and monitor response to treatments in real-time. Herein, we describe the development of the first CD19 positron emission tomography (PET) tracer, and its evaluation in a rodent model of MS, experimental autoimmune encephalomyelitis (EAE). Methods Female C57BL/6 J mice were induced with EAE through immunization with myelin oligodendrocyte glycoprotein (MOG1–125). PET imaging of naïve and EAE mice was performed 19 h after administration of [64Cu]CD19-mAb. Thereafter, radioactivity in organs of interest was determined by gamma counting, followed by ex vivo autoradiography of central nervous system (CNS) tissues. Anti-CD45R (B220) immunostaining of brain tissue from EAE and naïve mice was also conducted. Results Radiolabelling of DOTA-conjugated CD19-mAb with 64Cu was achieved with a radiochemical purity of 99% and molar activity of 2 GBq/μmol. Quantitation of CD19 PET images revealed significantly higher tracer binding in whole brain of EAE compared to naïve mice (2.02 ± 0.092 vs. 1.68 ± 0.06 percentage of injected dose per gram, % ID/g, p = 0.0173). PET findings were confirmed by ex vivo gamma counting of perfused brain tissue (0.22 ± 0.020 vs. 0.12 ± 0.003 % ID/g, p = 0.0010). Moreover, ex vivo autoradiography of brain sections corresponded with PET imaging results and the spatial distribution of B cells observed in B220 immunohistochemistry—providing further evidence that [64Cu]CD19-mAb enables visualization of B cell infiltration into the CNS of EAE mice. Conclusion CD19-PET imaging can be used to detect elevated levels of B cells in the CNS of EAE mice, and has the potential to impact the way we study, monitor, and treat clinical MS.


2020 ◽  
Author(s):  
Dennis Oliveira ◽  
Carina Stegmayr ◽  
Alexander Heinzel ◽  
Johannes Ermert ◽  
Bernd Neumaier ◽  
...  

Abstract Background Recent studies reported on high uptake of the PSMA ligands [ 68 Ga]HBED-CC ( 68 Ga-PSMA) and 18 F-DCFPyL in cerebral gliomas. This study explores the regional uptake and cellular targets of 68 Ga-PSMA and 18 F-DCFPyL in three different rat glioma models. Methods F98, 9L or U87 rat gliomas were implanted into the brains of 38 rats. After 13 days of tumor growth, 68 Ga-PSMA (n=21) or 18 F-DCFPyL (n=17) were injected intravenously and animals were sacrificed 40 min later. Five animals for each tracer and tumor model were additionally investigated by micro-PET at 20-40 min postinjection. Cryosections of the tumor bearing brains were analyzed by ex vivo autoradiography and immunofluorescence staining for blood vessels, microglia, astrocytes and presence of PSMA. Blood-brain barrier (BBB) permeability was tested by coinjection of Evans blue dye (EBD). 68 Ga-PSMA uptake after restoration of BBB integrity by treatment with dexamethasone (Dex) was evaluated in four animals with U87 gliomas. Competition experiments using the PSMA-receptor inhibitor 2-(Phosphonomethyl)pentane-1,5-dioic acid (PMPA) were performed for both tracers in two animals each. Results Autoradiography demonstrated a strong 68 Ga-PSMA and 18 F-DCFPyL binding in the peritumoral area and moderate binding in the center of the tumors. PMPA administration led to complete inhibition of 68 Ga-PSMA and 18 F-DCFPyL binding in the peritumoral region. Restoration of BBB by Dex treatment reduced EBD extravasation but 68 Ga-PSMA binding remained unchanged. Expression of activated microglia (CD11b) was low in the intra- and peritumoral area but GFAP staining revealed strong activation of astrocytes in congruency to the tracer binding in the peritumoral area. All tumors were visualized in micro PET, showing a lower tumor/brain contrast with 68 Ga-PSMA than with 18 F-DCFPyL. Conclusions High uptake of 68 Ga-PSMA and 18 F-DCFPyL in the peritumoral area of all glioma models is presumably caused by activated astrocytes. This may represent a limitation for the clinical application of PSMA ligands in gliomas.


2020 ◽  
Author(s):  
Marc Y Stevens ◽  
Haley C Cropper ◽  
Katherine L Lucot ◽  
Aisling M Chaney ◽  
Kendra J Lechtenberg ◽  
...  

Abstract Background: B cells play a central role in multiple sclerosis (MS) through production of injurious antibodies, secretion of pro-inflammatory cytokines, and antigen presentation. The therapeutic success of monoclonal antibodies (mAbs) targeting B cells in some but not all individuals suffering from MS highlights the need for a method to stratify patients and monitor response to treatments in real time. Herein, we describe the development of the first CD19 positron emission tomography (PET) tracer and its evaluation in a rodent model of MS, experimental autoimmune encephalomyelitis (EAE).Methods: Female C57BL/6J mice were induced with EAE through immunisation with myelin oligodendrocyte glycoprotein (MOG1–125). PET imaging of naïve and EAE mice was performed 19 h after administration of [64Cu]CD19-mAb. Thereafter, radioactivity in organs of interest was determined by gamma counting, followed by ex vivo autoradiography of central nervous system (CNS) tissues. Anti-CD45R (B220) immunostaining of brain tissue from EAE and naïve mice was also conducted.Results: Radiolabelling of DOTA-conjugated CD19-mAb with 64Cu was achieved with a radiochemical purity of 99% and molar activity of 2 GBq/mol. Quantitation of CD19 PET images revealed significantly higher tracer binding in whole brain of EAE compared to naïve mice (2.02±0.092 vs. 1.68±0.06 percentage of injected dose per gram, %ID/g, p=0.0173). PET findings were confirmed by ex vivo gamma counting of perfused brain tissue (0.22±0.020 vs. 0.12±0.003 %ID/g, p=0.0010). Moreover, ex vivo autoradiography of brain sections corresponded with PET imaging results and the spatial distribution of B cells observed in B220 immunohistochemistry – providing further evidence that [64Cu]CD19-mAb enables visualisation of B cell infiltration into the CNS of EAE mice. Conclusion: CD19-PET imaging can be used to detect elevated levels of B cells in the CNS of EAE mice, and has the potential to impact the way we study, monitor, and treat clinical MS.


2020 ◽  
Author(s):  
Yuping Xu ◽  
Lizhen Wang ◽  
Donghui Pan ◽  
Junjie Yan ◽  
Xinyu Wang ◽  
...  

Abstract Background: Human epidermal growth factor receptor-2 (HER2) is an important biomarker for tumor diagnosis and therapy. Affibody is an ideal vector for preparing HER2 specific probes due to the advantages such as high affinity and rapid blood clearance etc. 89Zr is a novel PET imaging isotope with long half-lives and suitable for tracking biological processes for longer periods. In this study, a novel 89Zr labeled HER2 affibody, 89Zr-DFO-MAL-Cys-MZHER2, was synthesized and its imaging properties were also evaluated. Results: The precursors, DFO-MAL-Cys-MZHER2, were obtained with the yields of nearly 50%. The yields of 89Zr -DFO-MAL-Cys-MZHER2 were 90.2±1.9% and the radiopurities were more than 95%. The total synthesis time was only 30 minutes. The probes were stable in PBS and serum. The tracer accumulated in HER2 overexpression human ovarian cancer SKOV-3 cells. In vivo studies in mice bearing tumors showed that the probe highly retained in SKOV-3 xenografts even for 48 hours. The tumors were visualized with good contrast to normal tissue. ROI analysis revealed that the average uptakes in the tumor were greater than 5 %ID/g. On the contrary, the counterparts of MCF-7 tumors kept low levels of (~1%ID/g). The outcome was consistent with the immunohistochemical analysis and ex vivo autoradiography. The probe quickly cleared from the blood and normal organs, and mainly excreted through the urinary system. Conclusion: The novel HER2 affibody for PET imaging was easily prepared with satisfactory labeling yield and radiochemical purity. 89Zr-DFO-MAL-MZHER is a potential candidate for monitoring HER2 expression and may play specific roles in clinical cancer theranostics.


Sign in / Sign up

Export Citation Format

Share Document