scholarly journals Cost-Effective Biochar Produced from Agricultural Residues and Its Application for Preparation of High Performance Form-Stable Phase Change Material via Simple Method

2018 ◽  
Vol 19 (10) ◽  
pp. 3055 ◽  
Author(s):  
Yan Chen ◽  
Zhixing Cui ◽  
Han Ding ◽  
Yechao Wan ◽  
Zhibo Tang ◽  
...  

A new form-stable composite phase change material (PEG/ASB) composed of almond shell biochar (ASB) and polyethylene glycol (PEG) was produced via a simple and easy vacuum impregnation method. The supporting material ASB, which was cost effective, environmentally friendly, renewable and rich in appropriate pore structures, was produced from agricultural residues of almond shells by a simple pyrolysis method, and it was firstly used as the matrix of PEG. Different analysis techniques were applied to investigate the characteristics of PEG/ASB, including structural and thermal properties, and the interaction mechanism between ASB and PEG was studied. The thermogravimetric analysis (TGA) and thermal cycle tests demonstrated that PEG/ASB possessed favorable thermal stability. The differential scanning calorimetry (DSC) curves demonstrated that the capacities for latent heat storage of PEG/ASB were enhanced with increasing PEG weight percentage. Additionally, PEG/ASB had an excellent thermal conductivity of 0.402 W/mK, which was approximately 1.6 times higher than that of the pure PEG due to the addition of ASB. All the study results indicated that PEG/ASB had favorable phase change properties, which could be used for thermal energy storage.

2011 ◽  
Vol 347-353 ◽  
pp. 4109-4113
Author(s):  
Kun Xu ◽  
Shi Rong Liu ◽  
Zhong Bin Ni ◽  
Ming Qing Chen ◽  
Ming Fu Mao

A kind of form stable phase change material (PCM) based on expanded perlite, paraffin, urea formaldehyde hybrids is prepared by using vacuum-impregnation process. This kind of form stable PCM is made of paraffin as a dispersed phase change material and expanded perlite as a supporting material, and urea-formaldehyde resins as membrane materials to be applied to the porous surface of expanded perlite(EP). The structure of urea-formaldehyde resins(UF) being prepared is characterized by Fourier Transform Infrared Spectrophotometer(FT-IR). Hybrids’ thermal stability, latentheat and morphology are characterized by the thermogravimetry analysis(TGA), differential scanning calorimeter(DSC) Method and scanning electronic microscope(SEM), respectively. The FT-IR and SEM curves show that urea-formaldehyde resins have already been formed. The TGA analysis indicates that the form-stable phase change material has very good thermostability under working atmosphere. The application of DSC not only studies the appropriate curing time of UF,but also indicates that the form-stable PCM that has been prepared has more stable thermal energy storage performance than the traditional one.


Author(s):  
Mostaf Khosrsojerdi ◽  
Sayed Majid Mortazavi

This paper mainly addressed preparation of a new n-nonadecane/expanded dolomite (ED) composite using vacuum impregnation method. This method was first used for textile thermal protection. In this method, n-nonadecane was applied as the phase change material (PCM) and ED was used as the supporting material in order to prepare and construct form-stable composite PCM. Composite properties were determined by FTIR and SEM techniques. Also the heat transfer measurement and differential scanning calorimetric (DSC) test were used to determine the thermal properties of composite on fabrics. The DSC results showed that freezing and melting temperatures of n-nonadecane in composite PCM have changed a little, indicating that there are no strong interactions between n-nonadecane molecules and the pore walls of ED. It was found that moisture transfer properties have substantial effects on textiles comfortable attributes. That is why moisture transfer properties were measured; the results show that the more fabric pores have been filled in composite PCM, which these changes cause moisture transfer reduction. The SEM results showed that the PCM was well absorbed in the porous network of the expanded materials. The results for DSC and temperature transfer also suggested that fabric temperature range for the amount of coated PCM depends on its area; namely, the more PCM is used in the fabric, the more heat for temperature increase will be needed. This is because as PCM increases in the composite, the latent heat storage density increases too; further, by adding n-nonadecane/ED composite to the textile surface; moisture and thermal transfer could be reduced.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1395
Author(s):  
Angel Serrano ◽  
Ana M. Borreguero ◽  
Isabel Iglesias ◽  
Anselmo Acosta ◽  
Juan F. Rodríguez ◽  
...  

A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation time, obtaining form-stable PCMs with PEG-SiO2 contents within 15–110 wt.%. Kinetic adsorption curves of the sol into bricks having different porosities as well as maximum adsorption capacities were obtained. The effective diffusion coefficients (Deff) were estimated by means of Fick’s second law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor temperature during an entire operational day


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 44903-44911
Author(s):  
Suhong Zhu ◽  
Tao Ji ◽  
Dongyu Niu ◽  
Zhengxian Yang

As a new performance-enhancing additive, PEG/MMO PCM is expected to be effective in regulating extreme temperature and resisting UV aging of bitumen binder and thus could significantly extend the service life of bitumen pavement.


2021 ◽  
pp. 103592
Author(s):  
Tongyan Ren ◽  
Guotong Du ◽  
Qiyu Li ◽  
Yuechuan Wang ◽  
Xiaowei Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document