scholarly journals NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis

2019 ◽  
Vol 20 (2) ◽  
pp. 309 ◽  
Author(s):  
Katarzyna Skowrońska ◽  
Marta Obara-Michlewska ◽  
Magdalena Zielińska ◽  
Jan Albrecht

Studies of the last two decades have demonstrated the presence in astrocytic cell membranes of N-methyl-d-aspartate (NMDA) receptors (NMDARs), albeit their apparently low abundance makes demonstration of their presence and function more difficult than of other glutamate (Glu) receptor classes residing in astrocytes. Activation of astrocytic NMDARs directly in brain slices and in acutely isolated or cultured astrocytes evokes intracellular calcium increase, by mutually unexclusive ionotropic and metabotropic mechanisms. However, other than one report on the contribution of astrocyte-located NMDARs to astrocyte-dependent modulation of presynaptic strength in the hippocampus, there is no sound evidence for the significant role of astrocytic NMDARs in astrocytic-neuronal interaction in neurotransmission, as yet. Durable exposure of astrocytic and neuronal co-cultures to NMDA has been reported to upregulate astrocytic synthesis of glutathione, and in this way to increase the antioxidative capacity of neurons. On the other hand, overexposure to NMDA decreases, by an as yet unknown mechanism, the ability of cultured astrocytes to express glutamine synthetase (GS), aquaporin-4 (AQP4), and the inward rectifying potassium channel Kir4.1, the three astroglia-specific proteins critical for homeostatic function of astrocytes. The beneficial or detrimental effects of astrocytic NMDAR stimulation revealed in the in vitro studies remain to be proven in the in vivo setting.

Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


1998 ◽  
Vol 274 (1) ◽  
pp. H27-H34 ◽  
Author(s):  
William F. Jackson ◽  
Kevin L. Blair

We examined the functional role of large-conductance Ca2+-activated K+(KCa) channels in the hamster cremasteric microcirculation by intravital videomicroscopy and characterized the single-channel properties of these channels in inside-out patches of membrane from enzymatically isolated cremasteric arteriolar muscle cells. In second-order (39 ± 1 μm, n = 8) and third-order (19 ± 2 μm, n = 8) cremasteric arterioles with substantial resting tone, superfusion with the KCa channel antagonists tetraethylammonium (TEA, 1 mM) or iberiotoxin (IBTX, 100 nM) had no significant effect on resting diameters ( P > 0.05). However, TEA potentiated O2-induced arteriolar constriction in vivo, and IBTX enhanced norepinephrine-induced contraction of cremasteric arteriolar muscle cells in vitro. Patch-clamp studies revealed unitary K+-selective and IBTX-sensitive currents with a single-channel conductance of 240 ± 2 pS between −60 and 60 mV ( n = 7 patches) in a symmetrical 140 mM K+ gradient. The free Ca2+ concentration ([Ca2+]) for half-maximal channel activation was 44 ± 3, 20 ± 1, 6 ± 0.4, and 3 ± 0.5 μM at membrane potentials of −60, −30, +30, and +60 mV, respectively ( n = 5), with a Hill coefficient of 1.9 ± 0.2. Channel activity increased e-fold for a 16 ± 1 mV ( n = 6) depolarization. The plot of log[Ca2+] vs. voltage for half-maximal activation ( V ½) was linear ( r 2 = 0.9843, n = 6); the change in V ½ for a 10-fold change in [Ca2+] was 84 ± 5 mV, and the [Ca2+] for half-maximal activation at 0 mV (Ca0; the Ca2+ set point) was 9 μM. Thus, in vivo, KCa channels are silent in cremasteric arterioles at rest but can be recruited during vasoconstriction. We propose that the high Ca0 is responsible for the apparent lack of activity of these channels in resting cremasteric arterioles, and we suggest that this may result from expression of unique KCa channels in the microcirculation.


2020 ◽  
Vol 14 ◽  
Author(s):  
Santiago E. Charif ◽  
Luciana Luchelli ◽  
Antonella Vila ◽  
Matías Blaustein ◽  
Lionel M. Igaz

TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


2007 ◽  
Vol 204 (13) ◽  
pp. 3103-3111 ◽  
Author(s):  
Brian G. Petrich ◽  
Patrizia Marchese ◽  
Zaverio M. Ruggeri ◽  
Saskia Spiess ◽  
Rachel A.M. Weichert ◽  
...  

Integrins are critical for hemostasis and thrombosis because they mediate both platelet adhesion and aggregation. Talin is an integrin-binding cytoplasmic adaptor that is a central organizer of focal adhesions, and loss of talin phenocopies integrin deletion in Drosophila. Here, we have examined the role of talin in mammalian integrin function in vivo by selectively disrupting the talin1 gene in mouse platelet precursor megakaryocytes. Talin null megakaryocytes produced circulating platelets that exhibited normal morphology yet manifested profoundly impaired hemostatic function. Specifically, platelet-specific deletion of talin1 led to spontaneous hemorrhage and pathological bleeding. Ex vivo and in vitro studies revealed that loss of talin1 resulted in dramatically impaired integrin αIIbβ3-mediated platelet aggregation and β1 integrin–mediated platelet adhesion. Furthermore, loss of talin1 strongly inhibited the activation of platelet β1 and β3 integrins in response to platelet agonists. These data establish that platelet talin plays a crucial role in hemostasis and provide the first proof that talin is required for the activation and function of mammalian α2β1 and αIIbβ3 integrins in vivo.


2007 ◽  
Vol 18 (5) ◽  
pp. 1609-1620 ◽  
Author(s):  
Diana Caracino ◽  
Cheryl Jones ◽  
Mark Compton ◽  
Charles L. Saxe

Scar/WAVE proteins, members of the conserved Wiskott-Aldrich syndrome (WAS) family, promote actin polymerization by activating the Arp2/3 complex. A number of proteins, including a complex containing Nap1, PIR121, Abi1/2, and HSPC300, interact with Scar/WAVE, though the role of this complex in regulating Scar function remains unclear. Here we identify a short N-terminal region of Dictyostelium Scar that is necessary and sufficient for interaction with HSPC300 and Abi in vitro. Cells expressing Scar lacking this N-terminal region show abnormalities in F-actin distribution, cell morphology, movement, and cytokinesis. This is true even in the presence of wild-type Scar. The data suggest that the first 96 amino acids of Scar are necessary for participation in a large-molecular-weight protein complex, and that this Scar-containing complex is responsible for the proper localization and regulation of Scar. The presence of mis-regulated or unregulated Scar has significant deleterious effects on cells and may explain the need to keep Scar activity tightly controlled in vivo either by assembly in a complex or by rapid degradation.


2017 ◽  
Vol 214 (4) ◽  
pp. 905-917 ◽  
Author(s):  
Yochai Wolf ◽  
Anat Shemer ◽  
Michal Polonsky ◽  
Mor Gross ◽  
Alexander Mildner ◽  
...  

Monocytes are circulating mononuclear phagocytes, poised to extravasate to sites of inflammation and differentiate into monocyte-derived macrophages and dendritic cells. Tumor necrosis factor (TNF) and its receptors are up-regulated during monopoiesis and expressed by circulating monocytes, as well as effector monocytes infiltrating certain sites of inflammation, such as the spinal cord, during experimental autoimmune encephalomyelitis (EAE). In this study, using competitive in vitro and in vivo assays, we show that monocytes deficient for TNF or TNF receptors are outcompeted by their wild-type counterpart. Moreover, monocyte-autonomous TNF is critical for the function of these cells, as TNF ablation in monocytes/macrophages, but not in microglia, delayed the onset of EAE in challenged animals and was associated with reduced acute spinal cord infiltration of Ly6Chi effector monocytes. Collectively, our data reveal a previously unappreciated critical cell-autonomous role of TNF on monocytes for their survival, maintenance, and function.


1995 ◽  
Vol 15 (10) ◽  
pp. 5214-5225 ◽  
Author(s):  
A D Catling ◽  
H J Schaeffer ◽  
C W Reuter ◽  
G R Reddy ◽  
M J Weber

Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.


Sign in / Sign up

Export Citation Format

Share Document