inward rectifying potassium channel
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Oded Mayseless ◽  
El-Yazid Rachad ◽  
Gal Shapira ◽  
Andre Fiala ◽  
Oren Schuldiner

Postnatal refinement of neuronal connectivity shapes the mature nervous system. Pruning of exuberant connections involves both cell autonomous and non-cell autonomous mechanisms, such as neuronal activity. While the role of neuronal activity in the plasticity of excitatory synapses has been extensively studied, the involvement of inhibition is less clear. Furthermore, the role of activity during stereotypic developmental remodeling, where competition is not as apparent, is not well understood. Here we use the Drosophila mushroom body as a model to show that regulated silencing of neuronal activity is required for developmental axon pruning of the γ-Kenyon cells. We demonstrate that silencing neuronal activity is mechanistically achieved by cell autonomous expression of the inward rectifying potassium channel (irk1) combined with inhibition by the GABAergic APL neuron. These results support the Hebbian-like rule 'use it or lose it', where inhibition can destabilize connectivity and promote pruning while excitability stabilizes existing connections.


2021 ◽  
Author(s):  
Aurelia Mapps ◽  
Erica Boehm ◽  
Corinne Beier ◽  
William Thomas Keenan ◽  
Jennifer Langel ◽  
...  

Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, how satellite glia contribute to sympathetic functions remain unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via extracellular K+ buffering. These findings highlight neuron-satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 573
Author(s):  
Matjaž Stenovec

Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 461 ◽  
Author(s):  
Xiaoyi Lai ◽  
Jie Xu ◽  
Haihao Ma ◽  
Zheming Liu ◽  
Wei Zheng ◽  
...  

In insects, inward-rectifying potassium (Kir) channels regulate vital physiological functions, such as feeding behavior, silk secretion, renal excretion, and immune function. Therefore, they offer promising potential as targets for insecticides. Three types of Kir subunits have been identified in Diptera and Hemiptera, but the Kir subunits of Lepidoptera still remain unclear. This study identified five Kir subunit genes (pxkir1, pxkir2, pxkir3A, pxkir3B, and pxkir4) in the transcriptome of Plutella xylostella. Phylogenetic analysis identified pxkir1, pxkir2, pxkir3A, and pxkir3B as orthologous genes of kir1–3 in other insects. Interestingly, pxkir4 may be encoding a new class of Kir subunit in Lepidoptera that has not been reported to date. To identify further Kir channel subunits of P. xylostella, the gene expression profiles of five pxkir genes were studied by quantitative real-time PCR. These pxkir genes are expressed throughout the development of P. xylostella. pxkir1 and pxkir2 were highly expressed in thoraxes and legs, while pxkir3 (3A and 3B) and pxkir4 had high expression levels in the midgut and Malpighian tubules. This study identified the composition and distribution of Kir subunits in P. xylostella for the first time, and provides useful information for the further study of Kir channel subunits in Lepidoptera.


2019 ◽  
Vol 59 (4) ◽  
pp. E28-E30 ◽  
Author(s):  
Kazumoto Shibuya ◽  
Atsuko Tsuneyama ◽  
Minako Beppu ◽  
Sonoko Misawa ◽  
Yukari Sekiguchi ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 309 ◽  
Author(s):  
Katarzyna Skowrońska ◽  
Marta Obara-Michlewska ◽  
Magdalena Zielińska ◽  
Jan Albrecht

Studies of the last two decades have demonstrated the presence in astrocytic cell membranes of N-methyl-d-aspartate (NMDA) receptors (NMDARs), albeit their apparently low abundance makes demonstration of their presence and function more difficult than of other glutamate (Glu) receptor classes residing in astrocytes. Activation of astrocytic NMDARs directly in brain slices and in acutely isolated or cultured astrocytes evokes intracellular calcium increase, by mutually unexclusive ionotropic and metabotropic mechanisms. However, other than one report on the contribution of astrocyte-located NMDARs to astrocyte-dependent modulation of presynaptic strength in the hippocampus, there is no sound evidence for the significant role of astrocytic NMDARs in astrocytic-neuronal interaction in neurotransmission, as yet. Durable exposure of astrocytic and neuronal co-cultures to NMDA has been reported to upregulate astrocytic synthesis of glutathione, and in this way to increase the antioxidative capacity of neurons. On the other hand, overexposure to NMDA decreases, by an as yet unknown mechanism, the ability of cultured astrocytes to express glutamine synthetase (GS), aquaporin-4 (AQP4), and the inward rectifying potassium channel Kir4.1, the three astroglia-specific proteins critical for homeostatic function of astrocytes. The beneficial or detrimental effects of astrocytic NMDAR stimulation revealed in the in vitro studies remain to be proven in the in vivo setting.


Sign in / Sign up

Export Citation Format

Share Document