scholarly journals Comparison of Polydopamine-Coated Mesoporous Silica Nanorods and Spheres for the Delivery of Hydrophilic and Hydrophobic Anticancer Drugs

2019 ◽  
Vol 20 (14) ◽  
pp. 3408 ◽  
Author(s):  
Anna-Karin Pada ◽  
Diti Desai ◽  
Kaiyao Sun ◽  
Narayana Prakirth Govardhanam ◽  
Kid Törnquist ◽  
...  

Mesoporous silica nanoparticles (MSNs) have been widely studied as drug delivery systems in nanomedicine. Surface coating of MSNs have enabled them to perform efficiently in terms of bioavailability, biocompatibility, therapeutic efficacy and targeting capability. Recent studies have suggested the use of polydopamine (PDA) as a facilitative coating for MSNs that provides sustained and pH-responsive drug release, owing to the adhesive “molecular-glue” function of PDA. This further endows these hybrid MSN@PDA particles with the ability to carry large amounts of hydrophilic drugs. In this study, we expand the feasibility of this platform in terms of exploring its ability to also deliver hydrophobic drugs, as well as investigate the effect of particle shape on intracellular delivery of both a hydrophilic and hydrophobic anticancer drug. MSN@PDA loaded with doxorubicin (hydrophilic) and fingolimod (hydrophobic) was studied via a systematic in vitro approach (cellular internalization, intracellular drug distribution and cytotoxicity). To promote the cellular uptake of the MSN@PDA particles, they were further coated with a polyethylene imine (PEI)-polyethylene glycol (PEG) copolymer. Drug-loaded, copolymer-coated MSN@PDA showed effective cellular uptake, intracellular release and an amplified cytotoxic effect with both doxorubicin and fingolimod. Additionally, rods exhibited delayed intracellular drug release and superior intracellular uptake compared to spheres. Hence, the study provides an example of how the choice and design of drug delivery systems can be tuned by the need for performance, and confirms the PDA coating of MSNs as a useful drug delivery platform beyond hydrophilic drugs.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 460
Author(s):  
Minja Mladenović ◽  
Ibrahim Morgan ◽  
Nebojša Ilić ◽  
Mohamad Saoud ◽  
Marija V. Pergal ◽  
...  

Ruthenium complexes are attracting interest in cancer treatment due to their potent cytotoxic activity. However, as their high toxicity may also affect healthy tissues, efficient and selective drug delivery systems to tumour tissues are needed. Our study focuses on the construction of such drug delivery systems for the delivery of cytotoxic Ru(II) complexes upon exposure to a weakly acidic environment of tumours. As nanocarriers, mesoporous silica nanoparticles (MSN) are utilized, whose surface is functionalized with two types of ligands, (2-thienylmethyl)hydrazine hydrochloride (H1) and (5,6-dimethylthieno[2,3-d]pyrimidin-4-yl)hydrazine (H2), which were attached to MSN through a pH-responsive hydrazone linkage. Further coordination to ruthenium(II) center yielded two types of nanomaterials MSN-H1[Ru] and MSN-H2[Ru]. Spectrophotometric measurements of the drug release kinetics at different pH (5.0, 6.0 and 7.4) confirm the enhanced release of Ru(II) complexes at lower pH values, which is further supported by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements. Furthermore, the cytotoxicity effect of the released metallotherapeutics is evaluated in vitro on metastatic B16F1 melanoma cells and enhanced cancer cell-killing efficacy is demonstrated upon exposure of the nanomaterials to weakly acidic conditions. The obtained results showcase the promising capabilities of the designed MSN nanocarriers for the pH-responsive delivery of metallotherapeutics and targeted treatment of cancer.


Nanoscale ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 1704-1715 ◽  
Author(s):  
Heveline D. M. Follmann ◽  
Osvaldo N. Oliveira ◽  
Danielle Lazarin-Bidóia ◽  
Celso V. Nakamura ◽  
Xiaoxi Huang ◽  
...  

Aerogels comprising hyperbranched polymers containing mesoporous silica nanoparticles are synthesized and demonstrated to serve as outstanding drug delivery systems.


2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


2015 ◽  
Vol 18 (7) ◽  
pp. 678-689 ◽  
Author(s):  
Xiaoqian Shan ◽  
Changsheng Liu ◽  
Fengqian Li ◽  
Chunfa Ouyang ◽  
Qun Gao ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 692-695
Author(s):  
Thomas Eickner ◽  
Michael Teske ◽  
Natalia Rekowska ◽  
Volkmar Senz ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract For the investigation of in vitro drug release, methods have been used in which samples of drug delivery systems are immersed in release medium. The medium is used to measure drug concentration via chromatography or photometry. These systems are suitable to investigate the drug release of different systems or to simulate tissue environments. When considering predominantly humid regions, e.g. for drug release into the cochlea through the round window membrane by a drug delivery system placed at that membrane, reproducible in vitro determination of drug release becomes particularly challenging. In this study the development of a system is reported that allows the investigation of the in vitro drug release simulating such conditions. The presented test system consists of an alginate hydrogel in glass vials simulating the biological membrane, which separates the drug delivery system from the medium filled compartment. Saline is used as release medium and injected under the hydrogel. The samples are placed on top of the hydrogel, which slightly contacts the medium surface. The drug concentration in the release medium was determined by HPLC measurements. This system allows for testing the release of dexamethasone without the samples being completely surrounded by medium. The hydrogel mediates the diffusion of the drug by ensuring the contact with the medium. Release was monitored for more than 23 days. The presented concept was successfully designed and manufactured. The system is inexpensive and can be duplicated easily. In this study, it was used to monitor the drug release of dexamethasone from PEGDA700 derived polymer. One challenge that remains to be considered is the low mechanical stability of the hydrogel, which results in a need for repeated manufacturing during the handling of the system.


Sign in / Sign up

Export Citation Format

Share Document