scholarly journals Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules

2019 ◽  
Vol 20 (16) ◽  
pp. 4017 ◽  
Author(s):  
Kaalak Reddy ◽  
Jana R. Jenquin ◽  
John D. Cleary ◽  
J. Andrew Berglund

This review, one in a series on myotonic dystrophy (DM), is focused on the development and potential use of small molecules as therapeutics for DM. The complex mechanisms and pathogenesis of DM are covered in the associated reviews. Here, we examine the various small molecule approaches taken to target the DNA, RNA, and proteins that contribute to disease onset and progression in myotonic dystrophy type 1 (DM1) and 2 (DM2).

Brain ◽  
2019 ◽  
Vol 142 (7) ◽  
pp. 1876-1886 ◽  
Author(s):  
Michael Flower ◽  
Vilija Lomeikaite ◽  
Marc Ciosi ◽  
Sarah Cumming ◽  
Fernando Morales ◽  
...  

Abstract The mismatch repair gene MSH3 has been implicated as a genetic modifier of the CAG·CTG repeat expansion disorders Huntington’s disease and myotonic dystrophy type 1. A recent Huntington’s disease genome-wide association study found rs557874766, an imputed single nucleotide polymorphism located within a polymorphic 9 bp tandem repeat in MSH3/DHFR, as the variant most significantly associated with progression in Huntington’s disease. Using Illumina sequencing in Huntington’s disease and myotonic dystrophy type 1 subjects, we show that rs557874766 is an alignment artefact, the minor allele for which corresponds to a three-repeat allele in MSH3 exon 1 that is associated with a reduced rate of somatic CAG·CTG expansion (P = 0.004) and delayed disease onset (P = 0.003) in both Huntington’s disease and myotonic dystrophy type 1, and slower progression (P = 3.86 × 10−7) in Huntington’s disease. RNA-Seq of whole blood in the Huntington’s disease subjects found that repeat variants are associated with MSH3 and DHFR expression. A transcriptome-wide association study in the Huntington’s disease cohort found increased MSH3 and DHFR expression are associated with disease progression. These results suggest that variation in the MSH3 exon 1 repeat region influences somatic expansion and disease phenotype in Huntington’s disease and myotonic dystrophy type 1, and suggests a common DNA repair mechanism operates in both repeat expansion diseases.


RNA Biology ◽  
2014 ◽  
Vol 11 (6) ◽  
pp. 742-754 ◽  
Author(s):  
Marzena Wojciechowska ◽  
Katarzyna Taylor ◽  
Krzysztof Sobczak ◽  
Marek Napierala ◽  
Wlodzimierz J Krzyzosiak

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 757 ◽  
Author(s):  
Alfonsina Ballester-Lopez ◽  
Ian Linares-Pardo ◽  
Emma Koehorst ◽  
Judit Núñez-Manchón ◽  
Guillem Pintos-Morell ◽  
...  

The number of cytosine-thymine-guanine (CTG) repeats (‘CTG expansion size’) in the 3′untranslated region (UTR) region of the dystrophia myotonica-protein kinase (DMPK) gene is a hallmark of myotonic dystrophy type 1 (DM1), which has been related to age of disease onset and clinical severity. However, accurate determination of CTG expansion size is challenging due to its characteristic instability. We compared five different approaches (heat pulse extension polymerase chain reaction [PCR], long PCR-Southern blot [with three different primers sets—1, 2 and 3] and small pool [SP]-PCR) to estimate CTG expansion size in the progenitor allele as well as the most abundant CTG expansion size, in 15 patients with DM1. Our results indicated variability between the methods (although we found no overall differences between long PCR 1 and 2 and SP-PCR, respectively). While keeping in mind the limited sample size of our patient cohort, SP-PCR appeared as the most suitable technique, with an inverse significant correlation found between CTG expansion size of the progenitor allele, as determined by this method, and age of disease onset (r = −0.734, p = 0.016). Yet, in light of the variability of the results obtained with the different methods, we propose that an international agreement is needed to determine which is the most suitable method for assessing CTG expansion size in DM1.


2020 ◽  
Vol 6 (4) ◽  
pp. e484
Author(s):  
Alfonsina Ballester-Lopez ◽  
Judit Núñez-Manchón ◽  
Emma Koehorst ◽  
Ian Linares-Pardo ◽  
Miriam Almendrote ◽  
...  

ObjectiveWe aimed to determine whether 3D imaging reconstruction allows identifying molecular:clinical associations in myotonic dystrophy type 1 (DM1).MethodsWe obtained myoblasts from 6 patients with DM1 and 6 controls. We measured cytosine-thymine-guanine (CTG) expansion and detected RNA foci and muscleblind like 1 (MBNL1) through 3D reconstruction. We studied dystrophia myotonica protein kinase (DMPK) expression and splicing alterations of MBNL1, insulin receptor, and sarcoplasmic reticulum Ca(2+)-ATPase 1.ResultsThree-dimensional analysis showed that RNA foci (nuclear and/or cytoplasmic) were present in 45%–100% of DM1-derived myoblasts we studied (range: 0–6 foci per cell). RNA foci represented <0.6% of the total myoblast nuclear volume. CTG expansion size was associated with the number of RNA foci per myoblast (r = 0.876 [95% confidence interval 0.222–0.986]) as well as with the number of cytoplasmic RNA foci (r = 0.943 [0.559–0.994]). Although MBNL1 colocalized with RNA foci in all DM1 myoblast cell lines, colocalization only accounted for 1% of total MBNL1 expression, with the absence of DM1 alternative splicing patterns. The number of RNA foci was associated with DMPK expression (r = 0.967 [0.079–0.999]). On the other hand, the number of cytoplasmic RNA foci was correlated with the age at disease onset (r = −0.818 [−0.979 to 0.019]).ConclusionsCTG expansion size modulates RNA foci number in myoblasts derived from patients with DM1. MBNL1 sequestration plays only a minor role in the pathobiology of the disease in these cells. Higher number of cytoplasmic RNA foci is related to an early onset of the disease, a finding that should be corroborated in future studies.


2012 ◽  
Vol 7 (5) ◽  
pp. 856-862 ◽  
Author(s):  
Jessica L. Childs-Disney ◽  
Jason Hoskins ◽  
Suzanne G. Rzuczek ◽  
Charles A. Thornton ◽  
Matthew D. Disney

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Jessica L. Childs-Disney ◽  
Ewa Stepniak-Konieczna ◽  
Tuan Tran ◽  
Ilyas Yildirim ◽  
HaJeung Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document