ctg repeats
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 30)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 354
Author(s):  
Stojan Peric ◽  
Jovan Pesovic ◽  
Dusanka Savic-Pavicevic ◽  
Vidosava Rakocevic Stojanovic ◽  
Giovanni Meola

Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260837
Author(s):  
Eric D. Wieben ◽  
Ross A. Aleff ◽  
Tommy A. Rinkoski ◽  
Keith H. Baratz ◽  
Shubham Basu ◽  
...  

Expansion of CTG trinucleotide repeats (TNR) in the transcription factor 4 (TCF4) gene is highly associated with Fuchs Endothelial Corneal Dystrophy (FECD). Due to limitations in the availability of DNA from diseased corneal endothelium, sizing of CTG repeats in FECD patients has typically been determined using DNA samples isolated from peripheral blood leukocytes. However, it is non-feasible to extract enough DNA from surgically isolated FECD corneal endothelial tissue to determine repeat length based on current technology. To circumvent this issue, total RNA was isolated from FECD corneal endothelium and sequenced using long-read sequencing. Southern blotting of DNA samples isolated from primary cultures of corneal endothelium from these same affected individuals was also assessed. Both long read sequencing and Southern blot analysis showed significantly longer CTG TNR expansion (>1000 repeats) in the corneal endothelium from FECD patients than those characterized in leukocytes from the same individuals (<90 repeats). Our findings suggest that the TCF4 CTG repeat expansions in the FECD corneal endothelium are much longer than those found in leukocytes.


2021 ◽  
Vol 37 ◽  
pp. 32-35
Author(s):  
Olivier Flabeau ◽  
Thomas Bisson

DM1 is characterized by a multisystemic involvement. Our objective was to determine the proportion of adequate follow-up for each affected organ in DM1 patients based on the recently published American and Spanish recommendations. To this end, we conducted a descriptive cross-sectional survey by phone in adult, genetically proven DM1 patients followed in the two French neuromuscular centers of Bayonne and Hendaye located in South Aquitaine, France. The questionnaire selected the most stringent criteria of the two international recommendations for each item of follow-up. Seventy-three patients were included, 55% of which were women (mean age of 48 years) with an average number of 467 CTG repeats. The proportion of patients receiving clinical follow-up in accordance with the recommendations was 90% in cardiology, 60% in neurology, 68% in ophthalmology, 53% in physiotherapy, 23% in pneumology, and 12% in rehabilitation. The high rate of neurological, cardiological, and ophthalmological monitoring might be explained by a locally dense medical demography whereas low rate of respiratory follow up and rehabilitation may reflect an incomplete knowledge of both the disease and the questionnaire. These results should be carefully interpretated as cognitive status may influence such a declarative study. Our study nevertheless disclosed important disparities according to the recommended multidisciplinary follow-up criteria in this French cohort of adult DM1 patients. These results highlight the major role of a multidisciplinary care and monitoring in DM1.


Vision ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 47
Author(s):  
Natasha Spiteri ◽  
Nino Hirnschall ◽  
Katherine van Bysterveldt ◽  
Alec Lin Hou ◽  
Gregory Moloney ◽  
...  

Purpose: To investigate whether Fuchs endothelial corneal dystrophy (FECD) genotype, specifically transcription factor 4 (TCF4) CTG triplet repeat “load” predicts time to clearance following Descemet’s Stripping Only (DSO). Methods: This prospective, interventional trial was conducted on consecutive FECD patients undergoing DSO. Genetic analysis using patients’ saliva was performed to assess the extent of CTG expansion using short tandem repeat analysis, corroborated gel electrophoresis and Sanger sequencing. Polymerase chain reaction and bidirectional Sanger sequencing was undertaken. Partial least square regression and logistic regression modelling was used to evaluate the predictive power of TCF4 repeats on corneal clearance. Results: Of 11 eyes of 11 patients, 8 showed complete corneal clearance. For these 8 patients, mean TCF4 allele repeat was 24.8 (SD: 23.7, range: 11–63) and 63.4 (SD: 30.3; range: 11–97), respectively. In total, 9/11 (81.8%) had expanded CTG repeats (>40) in one allele. In cases with an allele repeat ≥80, there was a significantly increased risk of corneal non-clearance (odds ratio 18.2, p = 0.009). Conclusion: Whilst it was not possible to predict time to corneal clearance based on CTG repeats, there is a significant correlation between allele repeats and achievement of corneal clearance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Rapisarda ◽  
Ariadna Bargiela ◽  
Beatriz Llamusi ◽  
Isabel Pont ◽  
Roger Estrada-Tejedor ◽  
...  

AbstractIn Myotonic Dystrophy type 1 (DM1), a non-coding CTG repeats rare expansion disease; toxic double-stranded RNA hairpins sequester the RNA-binding proteins Muscleblind-like 1 and 2 (MBNL1 and 2) and trigger other DM1-related pathogenesis pathway defects. In this paper, we characterize four d-amino acid hexapeptides identified together with abp1, a peptide previously shown to stabilize CUG RNA in its single-stranded conformation. With the generalized sequence cpy(a/t)(q/w)e, these related peptides improved three MBNL-regulated exon inclusions in DM1-derived cells. Subsequent experiments showed that these compounds generally increased the relative expression of MBNL1 and its nuclear-cytoplasmic distribution, reduced hyperactivated autophagy, and increased the percentage of differentiated (Desmin-positive) cells in vitro. All peptides rescued atrophy of indirect flight muscles in a Drosophila model of the disease, and partially rescued muscle function according to climbing and flight tests. Investigation of their mechanism of action supports that all four compounds can bind to CUG repeats with slightly different association constant, but binding did not strongly influence the secondary structure of the toxic RNA in contrast to abp1. Finally, molecular modeling suggests a detailed view of the interactions of peptide-CUG RNA complexes useful in the chemical optimization of compounds.


2021 ◽  
Author(s):  
Bin Yang ◽  
Alicia C Borgeaud ◽  
Marcela Buřičová ◽  
Lorène Aeschbach ◽  
Oscar Rodríguez-Lima ◽  
...  

Abstract Expanded CAG/CTG repeat disorders affect over 1 in 2500 individuals worldwide. Potential therapeutic avenues include gene silencing and modulation of repeat instability. However, there are major mechanistic gaps in our understanding of these processes, which prevent the rational design of an efficient treatment. To address this, we developed a novel system, ParB/ANCHOR-mediated Inducible Targeting (PInT), in which any protein can be recruited at will to a GFP reporter containing an expanded CAG/CTG repeat. Previous studies have implicated the histone deacetylase HDAC5 and the DNA methyltransferase DNMT1 as modulators of repeat instability via mechanisms that are not fully understood. Using PInT, we found no evidence that HDAC5 or DNMT1 modulate repeat instability upon targeting to the expanded repeat, suggesting that their effect is independent of local chromatin structure. Unexpectedly, we found that expanded CAG/CTG repeats reduce the effectiveness of gene silencing mediated by targeting HDAC5 and DNMT1. The repeat-length effect in gene silencing by HDAC5 was abolished by a small molecule inhibitor of HDAC3. Our results have important implications on the design of epigenome editing approaches for expanded CAG/CTG repeat disorders. PInT is a versatile synthetic system to study the effect of any sequence of interest on epigenome editing.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Chaitali Misra ◽  
Ullas V Chembazhi ◽  
Sarah Matatov ◽  
Sushant Bangru ◽  
Auinash Kalsotra

Myotonic Dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy, is caused by CTG trinucleotide repeat expansion in the 3’-UTR of the DMPK gene. Heart dysfunctions occur in nearly 80% of DM1 patients, and cardiac arrhythmias or conduction abnormalities are a prominent cause of mortality in affected individuals. Yet, the underlying mechanisms causing such abnormalities are not well understood. We recently demonstrated that aberrant expression of a non-muscle splice isoform of RNA-binding protein RBFOX2 triggers cardiac conduction delay, atrioventricular heart blocks, and spontaneous arrhythmogenesis in DM1 hearts. Here we studied the mechanism(s) by which non-muscle RBFOX2 induces mis-splicing of cardiac conduction genes and tested new therapeutic strategies for treating the lethal cardiac symptoms of this disease. By performing eCLIP and high-resolution RNA-sequencing studies on cardiomyocytes isolated from wild type (expressing the normal muscle-specific RBFOX2 43 isoform), Rbfox2 Δ43/Δ43 (expressing the non-muscle RBFOX2 40 isoform), and RBFOX2 40 overexpressing (OE) mice, we deconstructed the splicing regulatory networks of RBFOX2 43 and RBFOX2 40 isoforms, characterized their respective RNA binding landscapes, and determined the RBFOX2 40 -driven transcriptome alterations in DM1 heart tissue. We acquired induced pluripotent stem cells (iPSC) from healthy, moderate (238 CTG repeats) and severely (1001 CTG repeats) affected DM1 individuals and differentiated them into cardiomyocytes (iPSC-CMs) to generate a human cardiac cell culture model of DM1. Utilizing anti-sense oligonucleotides and RNAi-based approaches, we restored the muscle-specific Rbfox2 splicing pattern and depleted the non-muscle RBFOX2 isoform in the DM1 IPS-CMs. We are currently analyzing the spontaneous electrical phenotypes of normal and DM1 iPSC-CMs. Collectively, our studies provide an in-depth understanding of the molecular basis for DM1-related electrophysiological abnormalities and offer an avenue to test the potential therapeutic utility of targeting the non-muscle RBFOX2 40 isoform in treating cardiac features of DM1.


Author(s):  
Xiaopeng Shen ◽  
Zhongxian Liu ◽  
Chunguang Wang ◽  
Feng Xu ◽  
Jingyi Zhang ◽  
...  

Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3′ untranslated region (3′UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.


2021 ◽  
Vol 7 (31) ◽  
pp. eabf7906
Author(s):  
Antonio Porro ◽  
Mohiuddin Mohiuddin ◽  
Christina Zurfluh ◽  
Vincent Spegg ◽  
Jingqi Dai ◽  
...  

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington’s disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle–regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document