ctg expansion
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Shira Yanovsky-Dagan ◽  
Eliora Cohen ◽  
Pauline Megalli ◽  
Gheona Altarescu ◽  
Oshrat Schonberger ◽  
...  

AbstractMyotonic dystrophy type 1 (DM1) is an autosomal dominant muscular dystrophy that results from a CTG expansion (50–4000 copies) in the 3′ UTR of the DMPK gene. The disease is classified into four or five somewhat overlapping forms, which incompletely correlate with expansion size in somatic cells of patients. With rare exception, it is affected mothers who transmit the congenital (CDM1) and most severe form of the disease. Why CDM1 is hardly ever transmitted by fathers remains unknown. One model to explain the almost exclusive transmission of CDM1 by affected mothers suggests a selection against hypermethylated large expansions in the germline of male patients. By assessing DNA methylation upstream to the CTG expansion in motile sperm cells of four DM1 patients, together with availability of human embryonic stem cell (hESCs) lines with paternally inherited hypermethylated expansions, we exclude the possibility that DMPK hypermethylation leads to selection against viable sperm cells (as indicated by motility) in DM1 patients.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011425
Author(s):  
Nicholas E Johnson ◽  
Russell J Butterfield ◽  
Katie Mayne ◽  
Tara Newcomb ◽  
Carina Imburgia ◽  
...  

Objective:To determine whether the genetic prevalence of the CTG expansion in the DMPK gene associated with myotonic dystrophy (DM1) in an unbiased cohort is higher than previously reported population estimates, ranging from 5-20 per 100,000 individuals.Methods:This study used a cross-sectional cohort of de-identified dried blood spots (DBS) from the newborn screening program in the state of New York, taken from consecutive births from 2013-2014. Blood spots were screened for the CTG repeat expansion in the DMPK gene using triplet-repeat primed PCR and melt curve analysis. Melt curve morphology was assessed by four blinded reviewers to identify samples with possible CTG expansion. Expansion of the CTG repeat was validated by PCR fragment sizing using capillary electrophoresis for samples classified as positive or premutation to confirm the result. Prevalence was calculated as the number of samples with CTG repeat size ≥50 repeats compared to the overall cohort.Results:Out of 50,382 consecutive births, there were 24 with a CTG repeat expansion ≥50, consistent with a diagnosis of DM1. This represents a significantly higher DM1 prevalence of 4.76 per 10,000 births (95%CI 2.86, 6.67) or 1 in every 2,100 births. There were an additional 96 samples (19.1 per 10,000 or 1 in 525 births) with a CTG expansion in the DMPK gene in the premutation range (CTG)35-49.Conclusions:The prevalence of individuals with CTG repeat expansions in DMPK is up to five times higher than previous reported estimates. This suggests DM1, with multisystemic manifestations, is likely underdiagnosed in practice.


2020 ◽  
Vol 11 ◽  
Author(s):  
Nan Zhang ◽  
Brittani Bewick ◽  
Guangbin Xia ◽  
Denis Furling ◽  
Tetsuo Ashizawa

Cas13a, an effector of type VI CRISPR-Cas systems, is an RNA guided RNase with multiplexing and therapeutic potential. This study employs the Leptotrichia shahii (Lsh) Cas13a and a repeat-based CRISPR RNA (crRNA) to track and eliminate toxic RNA aggregates in myotonic dystrophy type 1 (DM1) – a neuromuscular disease caused by CTG expansion in the DMPK gene. We demonstrate that LshCas13a cleaves CUG repeat RNA in biochemical assays and reduces toxic RNA load in patient-derived myoblasts. As a result, LshCas13a reverses the characteristic adult-to-embryonic missplicing events in several key genes that contribute to DM1 phenotype. The deactivated LshCas13a can further be repurposed to track RNA-rich organelles within cells. Our data highlights the reprogrammability of LshCas13a and the possible use of Cas13a to target expanded repeat sequences in microsatellite expansion diseases.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1321
Author(s):  
Alfonsina Ballester-Lopez ◽  
Emma Koehorst ◽  
Ian Linares-Pardo ◽  
Judit Núñez-Manchón ◽  
Miriam Almendrote ◽  
...  

Myotonic Dystrophy type 1 (DM1) is characterized by a high genetic and clinical variability. Determination of the genetic variability in DM1 might help to determine whether there is an association between CTG (Cytosine-Thymine-Guanine) expansion and the clinical manifestations of this condition. We studied the variability of the CTG expansion (progenitor, mode, and longest allele, respectively, and genetic instability) in three tissues (blood, muscle, and tissue) from eight patients with DM1. We also studied the association of genetic data with the patients’ clinical characteristics. Although genetic instability was confirmed in all the tissues that we studied, our results suggest that CTG expansion is larger in muscle and skin cells compared with peripheral blood leukocytes. While keeping in mind that more research is needed in larger cohorts, we have provided preliminary evidence suggesting that the estimated progenitor CTG size in muscle could be potentially used as an indicator of age of disease onset and muscle function impairment.


2020 ◽  
Vol 6 (5) ◽  
pp. e504
Author(s):  
Jacob N. Miller ◽  
Ellen van der Plas ◽  
Mark Hamilton ◽  
Timothy R. Koscik ◽  
Laurie Gutmann ◽  
...  

ObjectiveWe tested the hypothesis that variant repeat interruptions (RIs) within the DMPK CTG repeat tract lead to milder symptoms compared with pure repeats (PRs) in myotonic dystrophy type 1 (DM1).MethodsWe evaluated motor, neurocognitive, and behavioral outcomes in a group of 6 participants with DM1 with RI compared with a case-matched sample of 12 participants with DM1 with PR and a case-matched sample of 12 unaffected healthy comparison participants (UA).ResultsIn every measure, the RI participants were intermediate between UA and PR participants. For muscle strength, the RI group was significantly less impaired than the PR group. For measures of Full Scale IQ, depression, and sleepiness, all 3 groups were significantly different from each other with UA > RI > PR in order of impairment. The RI group was different from unaffected, but not significantly different from PR (UA > RI = PR) in apathy and working memory. Finally, in finger tapping and processing speed, RI did not differ from UA comparisons, but PR had significantly lower scores than the UA comparisons (UA = RI > PR).ConclusionsOur results support the notion that patients affected by DM1 with RI demonstrate a milder phenotype with the same pattern of deficits as those with PR indicating a similar disease process.


2020 ◽  
Vol 6 (4) ◽  
pp. e484
Author(s):  
Alfonsina Ballester-Lopez ◽  
Judit Núñez-Manchón ◽  
Emma Koehorst ◽  
Ian Linares-Pardo ◽  
Miriam Almendrote ◽  
...  

ObjectiveWe aimed to determine whether 3D imaging reconstruction allows identifying molecular:clinical associations in myotonic dystrophy type 1 (DM1).MethodsWe obtained myoblasts from 6 patients with DM1 and 6 controls. We measured cytosine-thymine-guanine (CTG) expansion and detected RNA foci and muscleblind like 1 (MBNL1) through 3D reconstruction. We studied dystrophia myotonica protein kinase (DMPK) expression and splicing alterations of MBNL1, insulin receptor, and sarcoplasmic reticulum Ca(2+)-ATPase 1.ResultsThree-dimensional analysis showed that RNA foci (nuclear and/or cytoplasmic) were present in 45%–100% of DM1-derived myoblasts we studied (range: 0–6 foci per cell). RNA foci represented <0.6% of the total myoblast nuclear volume. CTG expansion size was associated with the number of RNA foci per myoblast (r = 0.876 [95% confidence interval 0.222–0.986]) as well as with the number of cytoplasmic RNA foci (r = 0.943 [0.559–0.994]). Although MBNL1 colocalized with RNA foci in all DM1 myoblast cell lines, colocalization only accounted for 1% of total MBNL1 expression, with the absence of DM1 alternative splicing patterns. The number of RNA foci was associated with DMPK expression (r = 0.967 [0.079–0.999]). On the other hand, the number of cytoplasmic RNA foci was correlated with the age at disease onset (r = −0.818 [−0.979 to 0.019]).ConclusionsCTG expansion size modulates RNA foci number in myoblasts derived from patients with DM1. MBNL1 sequestration plays only a minor role in the pathobiology of the disease in these cells. Higher number of cytoplasmic RNA foci is related to an early onset of the disease, a finding that should be corroborated in future studies.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 757 ◽  
Author(s):  
Alfonsina Ballester-Lopez ◽  
Ian Linares-Pardo ◽  
Emma Koehorst ◽  
Judit Núñez-Manchón ◽  
Guillem Pintos-Morell ◽  
...  

The number of cytosine-thymine-guanine (CTG) repeats (‘CTG expansion size’) in the 3′untranslated region (UTR) region of the dystrophia myotonica-protein kinase (DMPK) gene is a hallmark of myotonic dystrophy type 1 (DM1), which has been related to age of disease onset and clinical severity. However, accurate determination of CTG expansion size is challenging due to its characteristic instability. We compared five different approaches (heat pulse extension polymerase chain reaction [PCR], long PCR-Southern blot [with three different primers sets—1, 2 and 3] and small pool [SP]-PCR) to estimate CTG expansion size in the progenitor allele as well as the most abundant CTG expansion size, in 15 patients with DM1. Our results indicated variability between the methods (although we found no overall differences between long PCR 1 and 2 and SP-PCR, respectively). While keeping in mind the limited sample size of our patient cohort, SP-PCR appeared as the most suitable technique, with an inverse significant correlation found between CTG expansion size of the progenitor allele, as determined by this method, and age of disease onset (r = −0.734, p = 0.016). Yet, in light of the variability of the results obtained with the different methods, we propose that an international agreement is needed to determine which is the most suitable method for assessing CTG expansion size in DM1.


2020 ◽  
Vol 66 (4) ◽  
pp. 614-615
Author(s):  
Jee-Soo Lee ◽  
Kyung Bok Lee ◽  
Han Song ◽  
ChoongHyun Sun ◽  
Man Jin Kim ◽  
...  

2019 ◽  
Vol 116 (42) ◽  
pp. 20991-21000 ◽  
Author(s):  
Kaalak Reddy ◽  
Jana R. Jenquin ◽  
Ona L. McConnell ◽  
John D. Cleary ◽  
Jared I. Richardson ◽  
...  

A CTG repeat expansion in the DMPK gene is the causative mutation of myotonic dystrophy type 1 (DM1). Transcription of the expanded CTG repeat produces toxic gain-of-function CUG RNA, leading to disease symptoms. A screening platform that targets production or stability of the toxic CUG RNA in a selective manner has the potential to provide new biological and therapeutic insights. A DM1 HeLa cell model was generated that stably expresses a toxic r(CUG)480 and an analogous r(CUG)0 control from DMPK and was used to measure the ratio-metric level of r(CUG)480 versus r(CUG)0. This DM1 HeLa model recapitulates pathogenic hallmarks of DM1, including CUG ribonuclear foci and missplicing of pre-mRNA targets of the muscleblind (MBNL) alternative splicing factors. Repeat-selective screening using this cell line led to the unexpected identification of multiple microtubule inhibitors as hits that selectively reduce r(CUG)480 levels and partially rescue MBNL-dependent missplicing. These results were validated by using the Food and Drug Administration-approved clinical microtubule inhibitor colchicine in DM1 mouse and primary patient cell models. The mechanism of action was found to involve selective reduced transcription of the CTG expansion that we hypothesize to involve the LINC (linker of nucleoskeleton and cytoskeleton) complex. The unanticipated identification of microtubule inhibitors as selective modulators of toxic CUG RNA opens research directions for this form of muscular dystrophy and may shed light on the biology of CTG repeat expansion and inform therapeutic avenues. This approach has the potential to identify modulators of expanded repeat-containing gene expression for over 30 microsatellite expansion disorders.


2018 ◽  
Vol 34 (5) ◽  
pp. 859-862 ◽  
Author(s):  
Minjin Wang ◽  
Shuo Guo ◽  
Wencong Yao ◽  
Jun Wang ◽  
Jianxia Tao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document