scholarly journals Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine

2019 ◽  
Vol 20 (22) ◽  
pp. 5760 ◽  
Author(s):  
Elvira Immacolata Parrotta ◽  
Stefania Scalise ◽  
Luana Scaramuzzino ◽  
Giovanni Cuda

A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2500-2500
Author(s):  
Tellechea Maria Florencia ◽  
Flavia S. Donaires ◽  
Tiago C. Silva ◽  
Lilian F. Moreira ◽  
Yordanka Armenteros ◽  
...  

Aplastic anemia (AA) is characterized by a hypoplastic bone marrow associated with low peripheral blood counts. In acquired cases, the immune system promotes hematopoietic stem and progenitor cell (HSPC) depletion by the action of several pro-inflammatory Th1 cytokines. The current treatment options for severe cases consist of sibling-matched allogeneic hematopoietic stem cell transplantation (HSCT) and immunosuppressive therapy (IST) with anti-thymocyte globulin, cyclosporine, and eltrombopag. However, most patients are not eligible for HSCT and, although about 85% of patients respond to IST with eltrombopag, a proportion of patients eventually relapse, requiring further therapies. Failure to respond adequately to immunosuppression may be attributed to the scarcity of HSPCs at the time of diagnosis. Induced pluripotent stem cells (iPSCs) are potentially an alternative source of patient-specific hematopoietic cells. Patient-specific HSPCs derived from in vitro iPSC differentiation may serve as a tool to study the disease as well as a source of hematopoietic tissue for cell therapies. The pyrimidoindole molecule UM171 induces ex vivo expansion of HSCs of human cord and peripheral blood and bone marrow, but the pathways modulated by this molecule are not well understood. Here we evaluated the hematopoietic differentiation potential of iPSCs obtained from patients with acquired AA. We further determined the effects of UM171 on this differentiation process. First, we derived iPSCs from 3 patients with acquired AA after treatment (1 female; average age, 31 years; 2 partial responders, 1 complete responder) and 3 healthy subjects (3 females; average age, 61 years) and induced differentiation in vitro through the embryoid body system in cell feeder and serum-free medium supplemented with cytokines. The hematopoietic differentiation of healthy-iPSCs yielded 19% ± 8.1% (mean ± SEM) of CD34+cells after 16 days in culture, in contrast with 11% ± 4.9% of CD34+cells obtained from the differentiation of AA-iPSCs, which corresponds to a 1.7-fold reduction in CD34+cell yield. The total number of erythroid and myeloid CFUs was lower in the AA-iPSC group as compared to healthy-iPSCs (12±4.2 vs.24±7.2; respectively; p<0.03). These findings suggest that erythroid-derived AA-iPSC have an intrinsic defect in hematopoietic differentiation. Next, we tested whether UM171 modulated hematopoietic differentiation of AA-iPSCs. We found that UM171 significantly stimulated the differentiation of both healthy and AA-iPSCs. In the healthy-iPSC group, the percentage of CD34+cells was 1.9-fold higher when treated with UM171 compared to controls treated with DMSO (37% ± 7.8% vs.19% ± 8.1%; respectively; p<0.03) and in AA-iPSCs the increase was 3.9-fold (45% ± 11% vs. 11% ± 4.9%; p<0.07). The clonogenic capacity of progenitors to produce erythroid and myeloid colonies also was augmented in both groups in comparison to DMSO (28±11 vs. 23±7.2) for healthy-iPSCs and for AA-iPSCs (23±8.5 vs. 12±4.2, p<0.06). We then investigated the molecular pathways influenced by UM171. The transcriptional profile of differentiated CD34+cells showed that UM171 up-regulated genes involved in early hematopoiesis from mesoderm (BRACHYURY and MIXL1) and primitive streak specification (APELA and APLNR), to hemangioblasts and primitive hematopoietic progenitor commitment (TDGF1, SOX17, and KLF5). We also observed the up-regulation of pro-inflammatory NF-kB activators (MAP4K1, ZAP70, and CARD11) and the anti-inflammatory gene PROCR, a marker of cultured HSCs and an NF-kB inhibitor. This balanced network has been previously suggested to be modulated by UM171 (Chagraoui et. al. Cell Stem Cell 2019). Taken together, our results showed that acquired AA-iPSCs may have intrinsic defects that impair hematopoietic differentiation in vitro. This defect may be atavic to the cell or, alternatively, the consequence of epigenetic changes in erythroid precursors provoked by the immune attack. In addition, our findings demonstrate that UM171 significantly stimulate the hematopoietic differentiation of AA-iPSCs and identified a novel molecular mechanism for UM171 as an enhancer of early hematopoietic development programs. These observations may be valuable for improving the achievement of de novo hematopoietic cells. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 20 (4) ◽  
pp. 259-268 ◽  
Author(s):  
Paolo Capparè ◽  
Giulia Tetè ◽  
Maria Teresa Sberna ◽  
Paola Panina-Bordignon

Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.


2017 ◽  
Vol 214 (10) ◽  
pp. 2817-2827 ◽  
Author(s):  
Julie R. Perlin ◽  
Anne L. Robertson ◽  
Leonard I. Zon

Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.


2021 ◽  
pp. 1-18
Author(s):  
Ryan S. Stowers

In the fields of regenerative medicine and tissue engineering, stem cells offer vast potential for treating or replacing diseased and damaged tissue. Much progress has been made in understanding stem cell biology, yielding protocols for directing stem cell differentiation toward the cell type of interest for a specific application. One particularly interesting and powerful signaling cue is the extracellular matrix (ECM) surrounding stem cells, a network of biopolymers that, along with cells, makes up what we define as a tissue. The composition, structure, biochemical features, and mechanical properties of the ECM are varied in different tissues and developmental stages, and serve to instruct stem cells toward a specific lineage. By understanding and recapitulating some of these ECM signaling cues through engineered ECM-mimicking hydrogels, stem cell fate can be directed in vitro. In this review, we will summarize recent advances in material systems to guide stem cell fate, highlighting innovative methods to capture ECM functionalities and how these material systems can be used to provide basic insight into stem cell biology or make progress toward therapeutic objectives.


Author(s):  
Peng Cui ◽  
Ping Zhang ◽  
Lin Yuan ◽  
Li Wang ◽  
Xin Guo ◽  
...  

Hypoxia-inducible factor 1α (HIF-1α) plays pivotal roles in maintaining pluripotency, and the developmental potential of pluripotent stem cells (PSCs). However, the mechanisms underlying HIF-1α regulation of neural stem cell (NSC) differentiation of human induced pluripotent stem cells (hiPSCs) remains unclear. In this study, we demonstrated that HIF-1α knockdown significantly inhibits the pluripotency and self-renewal potential of hiPSCs. We further uncovered that the disruption of HIF-1α promotes the NSC differentiation and development potential in vitro and in vivo. Mechanistically, HIF-1α knockdown significantly enhances mitofusin2 (MFN2)-mediated Wnt/β-catenin signaling, and excessive mitochondrial fusion could also promote the NSC differentiation potential of hiPSCs via activating the β-catenin signaling. Additionally, MFN2 significantly reverses the effects of HIF-1α overexpression on the NSC differentiation potential and β-catenin activity of hiPSCs. Furthermore, Wnt/β-catenin signaling inhibition could also reverse the effects of HIF-1α knockdown on the NSC differentiation potential of hiPSCs. This study provided a novel strategy for improving the directed differentiation efficiency of functional NSCs. These findings are important for the development of potential clinical interventions for neurological diseases caused by metabolic disorders.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2009 ◽  
Vol 1239 ◽  
Author(s):  
Karla Brammer ◽  
Seunghan Oh ◽  
Sungho Jin

AbstractTwo important goals in stem cell research are to control the cell proliferation without differentiation, and also to direct the differentiation into a specific cell lineage when desired. Recent studies indicate that the nanostructures substantially influence the stem cell behavior. It is well known that mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into stromal lineages such as adipocyte, chondrocyte, fibroblast, myocyte, and osteoblast cell types. By examining the cellular behavior of MSCs cultured in vitro on nanostructures, some understanding of the effects that the nanostructures have on the stem cell’s response has been obtained. Here we demonstrate that TiO2 nanotubes produced by anodization on Ti implant surface can regulate human mesenchymal stem cell (hMSC) differentiation towards an osteoblast lineage in the absence of osteogenic inducing factors. Altering the dimensions of nanotubular-shaped titanium oxide surface structures independently allowed either augmented human mesenchymal stem cell (hMSC) adhesion at smaller diameter levels or a specific differentiation of hMSCs into osteoblasts using only the geometric cues. Small (˜30 nm diameter) nanotubes promoted adhesion without noticeable differentiation, while larger (˜70 - 100 nm diameter) nanotubes elicited a dramatic, ˜10 fold stem cell elongation, which induced cytoskeletal stress and selective differentiation into osteoblast-like cells, offering a promising nanotechnology-based route for novel orthopaedics-related hMSC treatments. The fact that a guided and preferential osteogenic differentiation of stem cells can be achieved using substrate nanotopography alone without using potentially toxic, differentiation-inducing chemical agents is significant, which can be useful for future development of novel and enhanced stem cell control and therapeutic implant development.


2020 ◽  
pp. 153537022096178
Author(s):  
Jian Feng

The 30 trillion cells that self-assemble into a human being originate from the pluripotent stem cells in the inner cell mass of a human blastocyst. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to approximate various aspects of this natural developmental process artificially by generating materials that can be used in invasive mechanistic studies of virtually all human conditions. In Parkinson’s disease, instructions computed by the basal ganglia to control voluntary motor functions break down, leading to widespread rhythmic bursting activities in the basal ganglia and beyond. It is thought that these oscillatory neuronal activities, which disrupt aperiodic neurotransmission in a normal brain, may reduce information content in the instructions for motor control. Using midbrain neuronal cultures differentiated from iPSCs of Parkinson’s disease patients with parkin mutations, we find that parkin mutations cause oscillatory neuronal activities when dopamine D1-class receptors are activated. This system makes it possible to study the molecular basis of rhythmic bursting activities in Parkinson’s disease. Further development of stem cell models of Parkinson’s disease will enable better approximation of the situation in the brain of Parkinson’s disease patients. In this review, I will discuss what has been found in the past about the pathophysiology of motor dysfunction in Parkinson’s disease, especially oscillatory neuronal activities and how stem cell technologies may transform our abilities to understand the pathophysiology of Parkinson’s disease. Impact statement Research on the pathophysiology of Parkinson’s disease (PD) has generated effective therapies such as deep brain stimulation. A better understanding of PD pathophysiology calls for patient-specific materials amenable for invasive mechanistic studies. In this minireview, I discuss our recent work on oscillatory neuronal activities in midbrain neurons differentiated from induced pluripotent stem cells (iPSCs) of PD patients with parkin mutations. These patient-specific neurons enable a variety of studies previously not feasible in the human system. Further development in stem cell technologies may generate more realistic models for us to decipher PD pathophysiology. These new developments will transform research and development in Parkinson’s disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


2012 ◽  
Vol 24 (1) ◽  
pp. 286
Author(s):  
A. Dinnyes ◽  
M. K. Pirity ◽  
E. Gocza ◽  
P. Osteil ◽  
N. Daniel ◽  
...  

Pluripotent stem cells have the capacity to divide indefinitely and to differentiate to all the somatic tissues. They can be genetically manipulated in vitro by knocking in and out genes, therefore they serve as an excellent tool for gene-function studies and for the generation of models for human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, several attempts have been made to generate pluripotent stem cells from other species as it would help us to understand the differences and similarities of signaling pathways involved in pluripotency and differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved among different species. This review gives an overlook of embryonic and induced pluripotent stem cell (iPSCs) research in the rabbit which is one of the most relevant non-rodent species for animal models. To date, several lines of putative ESCs and iPSCs have been described in the rabbit. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit full pluripotency in vivo. Moreover, similarly to several domestic species, markers used to characterize the putative ESCs are not fully adequate because studies in domestic species have revealed that they are not specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing rabbit embryo. The status of isolation and characterization of the putative pluripotency genes in rabbit will be discussed. Using rabbit specific pluripotency genes we might be able to reprogram somatic cells and generate induced pluripotent stem cells more efficiently thus overcome some of the challenges towards harnessing the potential of this technology. This study was financed by EU FP7 (PartnErS, PIAP-GA-2008-218205; InduHeart, PEOPLE-IRG-2008-234390; InduVir, PEOPLE-IRG-2009-245808; RabPstem, PERG07-GA-2010-268422; PluriSys, HEALTH-2007-B-223485; AniStem, PIAP-GA-2011-286264), NKTH-OTKA-EU-7KP HUMAN-MB08-C-80-205; Plurabbit, OMFB-00130-00131/2010 ANR-NKTH/09-GENM-010-01.


Sign in / Sign up

Export Citation Format

Share Document