scholarly journals Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids

2020 ◽  
Vol 21 (2) ◽  
pp. 632 ◽  
Author(s):  
Nur Adiera Hanna Rosli ◽  
Kee Shyuan Loh ◽  
Wai Yin Wong ◽  
Rozan Mohamad Yunus ◽  
Tian Khoon Lee ◽  
...  

Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.

2014 ◽  
Vol 496-500 ◽  
pp. 728-732
Author(s):  
Yean Der Kuan ◽  
Jing Yi Chang ◽  
Min Shiang Huang ◽  
Yen Yao Chu ◽  
Yan Ci Chen ◽  
...  

The main content of this paper is to design and fabricate a type of surveillance ship with a proton exchange membrane fuel cell (PEMFC), which adopts hydrogen as fuel cell to generate electricity to drive the surveillance ship. This ship has devices of reconnaissance, lighting, shooting. The reconnaissance device could return real-time images to the command center via cloud technique which could understand the current situation of the reconnaissance location. A buoyancy device is designed into the hull to enhance the stability of running. This paper starts from the functional design and system evaluation, then conducts the fabrication and assembly of the surveillance ship, and finally makes the electric integration and the tests of the PEMFC, surveillance ship running, and hydrogen consumption. The results of the research shows the developed surveillance ship has the advantages of low pollution, clean energy, no effect of day and night, and could be driven via only a small amount of hydrogen, which meets the trend of environmental protection and has the potential of applications in the future.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3425 ◽  
Author(s):  
Zhai ◽  
Li

As one of the most efficient pathways to provide clean energy, fuel cells have attracted great attention in both academic and industrial communities. Proton exchange membranes (PEMs) or proton-conducting electrolytes are the key components in fuel cell devices, which require the characteristics of high proton conductivity as well as high mechanical, chemical and thermal stabilities. Organic–inorganic hybrid PEMs can provide a fantastic platform to combine both advantages of two components to meet these demands. Due to their extremely high proton conductivity, good thermal stability and chemical adjustability, polyoxometalates (POMs) are regarded as promising building blocks for hybrid PEMs. In this review, we summarize a number of research works on the progress of POM–polymer hybrid materials and related applications in PEMs. Firstly, a brief background of POMs and their proton-conducting properties are introduced; then, the hybridization strategies of POMs with polymer moieties are discussed from the aspects of both noncovalent and covalent concepts; and finally, we focus on the performance of these hybrid materials in PEMs, especially the advances in the last five years. This review will provide a better understanding of the challenges and perspectives of POM–polymer hybrid PEMs for future fuel cell applications.


2016 ◽  
Vol 4 (6) ◽  
pp. 2321-2331 ◽  
Author(s):  
Tiandu Dong ◽  
Jiahui Hu ◽  
Mitsuru Ueda ◽  
Yiming Wu ◽  
Xuan Zhang ◽  
...  

A multi-block compositing graft concept is investigated to fabricate proton exchange membranes. The prepared membranes demonstrate excellent ion conductive capacity and better fuel cell performance over the entire relative humidity conditions, compared to Nafion.


2015 ◽  
Vol 279 ◽  
pp. 115-119 ◽  
Author(s):  
F.J. Hernández-Fernández ◽  
A. Pérez de los Ríos ◽  
F. Mateo-Ramírez ◽  
C. Godínez ◽  
L.J. Lozano-Blanco ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdulhamed A. Sghayer ◽  
Khaled A. Mazuz ◽  
Naji A. Issa ◽  
Adel Diyaf

The proton conductivity of Nafion 112, 1035, 1135, 115, and 117 membranes has been studied. Measurements were made in 1 M H2SO4 at 298 K using a four-electrode, dc technique. The membrane area resistance increases with thickness, and it was 0.065, 0.092, 0.076, 0.115, and 0.13 ?. cm2 for Nafion 112, 1035, 1135, 115, and 117 membranes respectively. The results also showed that the proton conductivity of Nafion 112, 1035, 1135, 115, and 117 membranes was 0.09, 0.11, 0.10, 0.13, and 0.16 S.cm-1 respectively.In the PEM fuel cell applications, it was observed that the optimum Nafion ionomer wt.% requirement does not change with the membrane thickness and the membrane EW. In addition, the Nafion 1035 membrane can remain hydrated for longer than the Nafion 1135, or Nafion 112 membranes because it’s EW is (1000) lower than the Nafion EW of Nafion 1135 (1100), and Nafion 112 (1100). In other words, a higher performance, more stable, and longer life PEM fuel cell can be obtained by using Nafion 1035 membrane as a solid electrolyte especially for high operating temperature.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 355
Author(s):  
Tamar Zelovich ◽  
Mark E. Tuckerman

Fuel cell-based anion-exchange membranes (AEMs) and proton exchange membranes (PEMs) are considered to have great potential as cost-effective, clean energy conversion devices. However, a fundamental atomistic understanding of the hydroxide and hydronium diffusion mechanisms in the AEM and PEM environment is an ongoing challenge. In this work, we aim to identify the fundamental atomistic steps governing hydroxide and hydronium transport phenomena. The motivation of this work lies in the fact that elucidating the key design differences between the hydroxide and hydronium diffusion mechanisms will play an important role in the discovery and determination of key design principles for the synthesis of new membrane materials with high ion conductivity for use in emerging fuel cell technologies. To this end, ab initio molecular dynamics simulations are presented to explore hydroxide and hydronium ion solvation complexes and diffusion mechanisms in the model AEM and PEM systems at low hydration in confined environments. We find that hydroxide diffusion in AEMs is mostly vehicular, while hydronium diffusion in model PEMs is structural. Furthermore, we find that the region between each pair of cations in AEMs creates a bottleneck for hydroxide diffusion, leading to a suppression of diffusivity, while the anions in PEMs become active participants in the hydronium diffusion, suggesting that the presence of the anions in model PEMs could potentially promote hydronium diffusion.


2013 ◽  
Vol 10 (5) ◽  
Author(s):  
K. Scott ◽  
S. Pilditch ◽  
M. Mamlouk

A steady-state, isothermal, one-dimensional model of a direct methanol proton exchange membrane fuel cell (PEMFC), with a polybenzimidazole (PBI) membrane, was developed. The electrode kinetics were represented by the Butler–Volmer equation, mass transport was described by the multicomponent Stefan–Maxwell equations and Darcy's law, and the ionic and electronic resistances described by Ohm's law. The model incorporated the effects of temperature and pressure on the open circuit potential, the exchange current density, and diffusion coefficients, together with the effect of water transport across the membrane on the conductivity of the PBI membrane. The influence of methanol crossover on the cathode polarization is included in the model. The polarization curves predicted by the model were validated against experimental data for a direct methanol fuel cell (DMFC) operating in the temperature range of 125–175 °C. There was good agreement between experimental and model data for the effect of temperature and oxygen/air pressure on cell performance. The fuel cell performance was relatively poor, at only 16 mW cm−2 peak power density using low concentrations of methanol in the vapor phase.


Sign in / Sign up

Export Citation Format

Share Document