scholarly journals Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients

2020 ◽  
Vol 21 (7) ◽  
pp. 2473 ◽  
Author(s):  
Pavel Vodicka ◽  
Marketa Urbanova ◽  
Pavol Makovicky ◽  
Kristyna Tomasova ◽  
Michal Kroupa ◽  
...  

Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.

2008 ◽  
Vol 29 (3) ◽  
pp. 794-807 ◽  
Author(s):  
Lyra M. Griffiths ◽  
Dan Swartzlander ◽  
Kellen L. Meadows ◽  
Keith D. Wilkinson ◽  
Anita H. Corbett ◽  
...  

ABSTRACT DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
J. Kabzinski ◽  
B. Mucha ◽  
M. Cuchra ◽  
L. Markiewicz ◽  
K. Przybylowska ◽  
...  

DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms ofEXO1,LIG3, andPolBmay modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3andEXO1) the chance of malignant transformation.


2012 ◽  
Vol 28 (2) ◽  
pp. 473-480 ◽  
Author(s):  
TAKASHI KUNO ◽  
NAGAHIDE MATSUBARA ◽  
SATOSHI TSUDA ◽  
MASAYOSHI KOBAYASHI ◽  
MIE HAMANAKA ◽  
...  

2008 ◽  
Vol 30 (1) ◽  
pp. 2-10 ◽  
Author(s):  
S. Maynard ◽  
S. H. Schurman ◽  
C. Harboe ◽  
N. C. de Souza-Pinto ◽  
V. A. Bohr

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cooley ◽  
R. H. Elder ◽  
A. C. Povey

The DNA mismatch repair (MMR) and base excision repair (BER) systems are important determinants of cellular toxicity following exposure to agents that cause oxidative DNA damage. To examine the interactions between these different repair systems, we examined whether toxicity, induced byt-BOOH and KBrO3, differs in BER proficient (Mpg+/+,Nth1+/+) and deficient (Mpg−/−,Nth1−/−) mouse embryonic fibroblasts (MEFs) followingMsh2knockdown of between 79 and 88% using an shRNA expression vector.Msh2knockdown inNth1+/+cells had no effect ont-BOOH and KBrO3induced toxicity as assessed by an MTT assay; knockdown inNth1−/−cells resulted in increased resistance tot-BOOH and KBrO3, a result consistent with Nth1 removing oxidised pyrimidines.Msh2knockdown inMpg+/+cells had no effect ont-BOOH toxicity but increased resistance to KBrO3; inMpg−/−cells,Msh2knockdown increased cellular sensitivity to KBrO3but increased resistance to t-BOOH, suggesting a role forMpgin removing DNA damage induced by these agents. MSH2 dependent and independent pathways then determine cellular toxicity induced by oxidising agents. A complex interaction between MMR and BER repair systems, that is, exposure dependent, also exists to determine cellular toxicity.


2018 ◽  
Vol 214 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Daniel B. Azambuja ◽  
Natalia M. Leguisamo ◽  
Helena C. Gloria ◽  
Antonio Nocchi Kalil ◽  
Ernani Rhoden ◽  
...  

DNA Repair ◽  
2005 ◽  
Vol 4 (11) ◽  
pp. 1270-1280 ◽  
Author(s):  
Takanori Sugimoto ◽  
Emi Igawa ◽  
Haruna Tanihigashi ◽  
Mayumi Matsubara ◽  
Hiroshi Ide ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document