scholarly journals The Molecular and Mechanistic Insights Based on Gut–Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement

2020 ◽  
Vol 21 (9) ◽  
pp. 3066 ◽  
Author(s):  
Yun Ji ◽  
Yue Yin ◽  
Lijun Sun ◽  
Weizhen Zhang

Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple diseases. The modulation of gut microbiota as a mechanism affecting the pathogenesis of NAFLD is becoming a growing area of concern. Recent advances in the communication between gut and hepatic tissue pave novel ways to better explain the molecular mechanisms regarding the pathological physiology of NAFLD. In this review, we recapitulate the current knowledge of the mechanisms correlated with the development and progression of NAFLD regulated by the gut microbiome and gut–liver axis, which may provide crucial therapeutic strategies for NAFLD. These mechanisms predominantly involve: (1) the alteration in gut microbiome profile; (2) the effects of components and metabolites from gut bacteria (e.g., lipopolysaccharides (LPS), trimethylamine-N-oxide (TMAO), and N,N,N-trimethyl-5-aminovaleric acid (TMAVA)); and (3) the impairment of intestinal barrier function and bile acid homeostasis. In particular, the prevention and therapy of NAFLD assisted by nutritional strategies are highlighted, including probiotics, functional oligosaccharides, dietary fibers, ω-3 polyunsaturated fatty acids, functional amino acids (L-tryptophan and L-glutamine), carotenoids, and polyphenols, based on the targets excavated from the gut–liver axis.

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Natalia Vallianou ◽  
Gerasimos Socrates Christodoulatos ◽  
Irene Karampela ◽  
Dimitrios Tsilingiris ◽  
Faidon Magkos ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1719
Author(s):  
Valentina Castillo ◽  
Fernanda Figueroa ◽  
Karoll González-Pizarro ◽  
Paz Jopia ◽  
Claudia Ibacache-Quiroga

Non-alcoholic fatty liver disease (NAFLD) is a chronic non-communicable disease, with a prevalence of 25% worldwide. This pathology is a multifactorial illness, and is associated with different risks factors, including hypertension, hyperglycemia, dyslipidemia, and obesity. Beside these predisposing features, NAFLD has been related to changes in the microbiota, which favor the disease progression. In this context, the modulation of the gut microbiota has emerged as a new therapeutic target for the prophylaxis and treatment of NAFLD. This review describes the changes in the gut microbiota associated with NAFLD and the effect of probiotics, prebiotics, and synbiotics on the gut microbiota, liver damage, anthropometric parameters, blood lipids, inflammation markers and insulin resistance in these patients.


2021 ◽  
Vol 24 (4) ◽  
pp. 120
Author(s):  
T.S. Sall ◽  
E.S. Shcherbakova ◽  
S.I. Sitkin ◽  
T.Ya. Vakhitov ◽  
I.G. Bakulin ◽  
...  

Author(s):  
Ludovico Abenavoli ◽  
Anna C. Procopio ◽  
Emidio Scarpellini ◽  
Natale Polimeni ◽  
Isabella Aquila ◽  
...  

2020 ◽  
Author(s):  
Chyntia Olivia Maurine Jasirwan ◽  
Akhmadu Muradi ◽  
Irsan Hasan ◽  
Marcellus Simadibrata ◽  
Ikhwan Rinaldi ◽  
...  

Abstract Background : We investigated the gut microbiota in patients with non-alcoholic fatty liver disease (NAFLD) and its correlation with fibrosis and steatosis as reflected in the controlled attenuation parameter and transient elastography valuesMethods : A cross-sectional study was performed on 37 patients with NAFLD at Cipto Mangunkusumo National General Hospital from December 2018 to March 2019. The gut microbiota was investigated in fecal samples with 16S RNA sequencing using the next-generation sequencing platform MiSeq (Illumina).Results : NAFLD was more common in patients with metabolic syndrome. Firmicutes, Bacteroidetes, and Proteobacteria were the predominant phyla. Bacteroides was more dominant than Prevotella, contrary to the results in previous studies on normal populations in Indonesia. Microbiota dysbiosis was observed in most samples. The gastrointestinal microbiota diversity was significantly decreased in patients with NAFLD with high triglyceride levels and central obesity. The Firmicutes/Bacteroidetes ratio correlated with steatosis and obesity, whereas some other species in the lower taxonomy were mostly correlated with steatosis and obesity without fibrosis. Proteobacteria is the only phylum strongly correlated with fibrosis in patients with normal body mass index.Conclusions : The gut microbiota diversity was decreased in patients with NAFLD with high triglyceride levels and central obesity, and certain gut microbes were correlated with fibrosis and steatosis.


Sign in / Sign up

Export Citation Format

Share Document