scholarly journals LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro

2020 ◽  
Vol 21 (17) ◽  
pp. 6110
Author(s):  
Ineke D.C. Jansen ◽  
Wikky Tigchelaar-Gutter ◽  
Jolanda M. A. Hogervorst ◽  
Teun J. de Vries ◽  
Paul Saftig ◽  
...  

Lysosome associated membrane proteins (LAMPs) are involved in several processes, among which is fusion of lysosomes with phagosomes. For the formation of multinucleated osteoclasts, the interaction between receptor activator of nuclear kappa β (RANK) and its ligand RANKL is essential. Osteoclast precursors express RANK on their membrane and RANKL is expressed by cells of the osteoblast lineage. Recently it has been suggested that the transport of RANKL to the plasma membrane is mediated by lysosomal organelles. We wondered whether LAMP-2 might play a role in transportation of RANKL to the plasma membrane of osteoblasts. To elucidate the possible function of LAMP-2 herein and in the formation of osteoclasts, we analyzed these processes in vivo and in vitro using LAMP-2-deficient mice. We found that, in the presence of macrophage colony stimulating factor (M-CSF) and RANKL, active osteoclasts were formed using bone marrow cells from calvaria and long bone mouse bone marrow. Surprisingly, an almost complete absence of osteoclast formation was found when osteoclast precursors were co-cultured with LAMP-2 deficient osteoblasts. Fluorescence-activated cell sorting FACS analysis revealed that plasma membrane-bound RANKL was strongly decreased on LAMP-2 deficient osteoblasts. These results suggest that osteoblastic LAMP-2 is required for osteoblast-induced osteoclast formation in vitro.

2020 ◽  
Vol 21 (11) ◽  
pp. 3774
Author(s):  
Giuliana Ascone ◽  
Yixuan Cao ◽  
Ineke D.C. Jansen ◽  
Irene Di Ceglie ◽  
Martijn H.J. van den Bosch ◽  
...  

Recently, it was shown that interleukin-1β (IL-1β) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn−/−) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C−), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31− Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn−/− mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn−/− mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn−/− cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn−/− osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1224-1224
Author(s):  
Jerry C. Cheng ◽  
Dejah Judelson ◽  
Kentaro Kinjo ◽  
Jenny Chang ◽  
Elliot Landaw ◽  
...  

Abstract The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, memory, and glucose metabolism. We previously demonstrated that CREB overexpression is associated with an increased risk of relapse in a small cohort of adult acute myeloid leukemia (AML) patients. Transgenic mice that overexpress CREB in myeloid cells develop myeloproliferative/myelodysplastic syndrome after one year. Bone marrow cells from these mice have increased self-renewal and proliferation. To study the expression of CREB in normal hematopoiesis, we performed quantitative real-time PCR in both mouse and human hematopoietic stem cells (HSCs). CREB expression was highest in the lineage negative population and was expressed in mouse HSCs, common myeloid progenitors, granulocyte/monocyte progenitors, megakaryocyte/erythroid progenitors, and in human CD34+38- cells. To understand the requirement of CREB in normal HSCs and myeloid leukemia cells, we inhibited CREB expression using RNA interference in vitro and in vivo. Bone marrow progenitor cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in CFU-GM but increased Gr-1/Mac-1+ cells compared to vector control infected cells (p<0.05). There were fewer terminally differentiated Mac-1+ cells in the CREB shRNA transduced cells (30%) compared to vector control (50%), suggesting that CREB is critical for both myeloid cell proliferation and differentiation. CREB downregulation also resulted in increased apoptosis of mouse bone marrow progenitor cells. Given our in vitro results, we transplanted sublethally irradiated mice with mouse bone marrow cells transduced with CREB or scrambled shRNA. At 5 weeks post-transplant, we observed increased Gr-1+/Mac-1+ cells in mice infused with CREB shRNA transduced bone marrow compared to controls. After 12 weeks post-transplant, there was no difference in hematopoietic reconstitution or in the percentage of cells expressing Gr-1+, Mac-1+, Gr-1/Mac-1+, B22-+, CD3+, Ter119+, or HSCs markers, suggesting that CREB is not required for HSC engraftment. To study the effects of CREB knockdown in myeloid leukemia cells, K562 and TF-1 cells were infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed for CREB expression and proliferation. Within 72 hours, cells transduced with CREB shRNA demonstrated decreased proliferation and survival with increased apoptosis. In cell cycle experiments, we observed increased numbers of cells in G1 and G2/M with CREB downregulation. Expression of cyclins A1 and D, which are known target genes of CREB, was statistically significantly decreased in TF-1 and K562 cells transduced with CREB shRNA lentivirus compared to controls. To study the in vivo effects of CREB knockdown on leukemic progression, we injected SCID mice with Ba/F3 cells expressing bcr-abl or bcr-abl with the T315I mutation and the luciferase reporter gene. Cells were transduced with either CREB or scrambled shRNA. Disease progression was monitored using bioluminescence imaging. The median survival of mice injected with CREB shRNA transduced Ba/F3 bcr-abl or bcr-abl with the T315I mutation was increased with CREB downregulation compared to controls (p<0.05). Our results demonstrate that CREB is a critical regulator of normal and neoplastic hematopoiesis both in vitro and in vivo.


2005 ◽  
Vol 24 (6) ◽  
pp. 427-434 ◽  
Author(s):  
Gunda Reddy ◽  
Gregory L. Erexson ◽  
Maria A. Cifone ◽  
Michael A. Major ◽  
Glenn J. Leach

Hexahydro-1,3,5-trinitro-1,3,5-triazine, a polynitramine compound, commonly known as RDX, has been used as an explosive in military munitions formulations since World War II. There is considerable data available regarding the toxicity and carcinogenicity of RDX. It has been classified as a possible carcinogen (U.S. Environmental Protection Agency, Integrated Risk Information System, 2005, www.epa.gov/IRIS/subst/0313.htm ). In order to better understand its gentoxic potential, the authors conducted the in vitro mouse lymphoma forward mutation and the in vivo mouse bone marrow micronucleus assays. Pure RDX (99.99%) at concentrations ranging from 3.93 to 500 μg/ml showed no cytotoxicity and no mutagenicity in forward mutations at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells, with and without metabolic activation. This finding was also confirmed by repeat assays under identical conditions. In addition, RDX did not induce micronuclei in mouse bone marrow cells when tested to the maximum tolerated dose of 250 mg/kg in male mice. These results show that RDX was not mutagenic in these in vitro and in vivo mammalian systems.


2009 ◽  
Vol 56 (2) ◽  
Author(s):  
Leszek Sliwiński ◽  
Joanna Folwarczna ◽  
Barbara Nowińska ◽  
Urszula Cegieła ◽  
Maria Pytlik ◽  
...  

Genistein, a major phytoestrogen of soy, is considered a potential drug for prevention and treatment of postmenopausal osteoporosis. The aim of the present study was to compare the effects of genistein, estradiol and raloxifene on the skeletal system in vivo and in vitro. Genistein (5 mg/kg), estradiol (0.1 mg/kg) or raloxifene hydrochloride (5 mg/kg) were administered daily by a stomach tube to mature ovariectomized Wistar rats for 4 weeks. Bone mass, mineral and calcium content, macrometric parameters and mechanical properties were examined. Also the effects of genistein, estradiol and raloxifene (10(-9)-10(-7) M) on the formation of osteoclasts from neonatal mouse bone marrow cells and the activity of osteoblasts isolated from neonatal mouse calvariae were compared. In vivo, estrogen deficiency resulted in the impairment of bone mineralization and bone mechanical properties. Raloxifene but not estradiol or genistein improved bone mineralization. Estradiol fully normalized the bone mechanical properties, whereas genistein augmented the deleterious effect of estrogen-deficiency on bone strength. In vitro, genistein, estradiol and raloxifene inhibited osteoclast formation from mouse bone marrow cells, decreasing the ratio of RANKL mRNA to osteoprotegerin mRNA expression in osteoblasts. Genistein, but not estradiol or raloxifene, decreased the ratio of alkaline phosphatase mRNA to ectonucleotide pyrophosphatase phosphodiesterase 1 mRNA expression in osteoblasts. This difference may explain the lack of genistein effect on bone mineralization observed in ovariectomized rats in the in vivo study. Concluding, our experiments demonstrated profound differences between the activities of genistein, estradiol and raloxifene towards the osseous tissue in experimental conditions.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4177-4184 ◽  
Author(s):  
Nadine Mayotte ◽  
Denis-Claude Roy ◽  
Jing Yao ◽  
Evert Kroon ◽  
Guy Sauvageau

Chronic myelogenous leukemia (CML) is a clonal stem cell disease caused by the BCR-ABL oncoprotein and is characterized, in its early phase, by excessive accumulation of mature myeloid cells, which eventually leads to acute leukemia. The genetic events involved in CML's progression to acute leukemia remain largely unknown. Recent studies have detected the presence of theNUP98-HOXA9 fusion oncogene in acute leukemia derived from CML patients, which suggests that these 2 oncoproteins may interact and influence CML disease progression. Using in vitro purging of BCR-ABL–transduced mouse bone marrow cells, we can now report that recipients of bone marrow cells engineered to coexpressBCR-ABL with NUP98-HOXA9 develop acute leukemia within 7 to 10 days after transplantation. However, no disease is detected for more than 2 months in mice receiving bone marrow cells expressing either BCR-ABL orNUP98-HOXA9. We also provide evidence of high levels ofHOXA9 expressed in leukemic blasts from acute-phase CML patients and that it interacts significantly on a genetic level withBCR-ABL in our in vivo CML model. Together, these studies support a causative, as opposed to a consequential, role forNUP98-HOXA9 (and possibly HOXA9) in CML disease progression.


Blood ◽  
1976 ◽  
Vol 48 (2) ◽  
pp. 301-307 ◽  
Author(s):  
HM Pinedo ◽  
BA Chabner ◽  
DS Zaharko ◽  
JM Bull

Abstract The effects of constant exposure to high concentrations of methotrexate in vivo on the committed stem cell (CFU-C) were studied by in vitro culture of mouse bone marrow. Bone marrow samples were obstained from animals receiving a continuous infusion, and were cultured in a methotrexate-free semisolid gel system. The effects of methotrexate infusion on the pluripotent stem cell population (CFU-S) were studied as well. Constant exposure to 10(-5) M methotrexate produced a rapid decrease in total nucleated cells per femur, reaching 35% of control at 12 hr and remaining at approximately this level throughout 48 hr of drug infusion. A decrease in the number of both CFU-C and CFU-S per femur was observed, which paralleled the drop in nucleated cells during the first 24 hr. However, in contrast to an additional drop in the number of CFU-S, an increase of CFU-C number per femur was observed from 24 to 48 hr. These data indicated a self-limited cell kill of nucleated bone marrow cells, and suggested recruitment of CFU-C from the CFU-S pool between 24 and 48 hr of infusion despite continued methotrexate infusion.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Rabindranath Bera ◽  
Ming-Chun Chiu ◽  
Ying-Jung Huang ◽  
Tung-Huei Lin ◽  
Ming-Chung Kuo ◽  
...  

Abstract Background Additional sex combs-like 1 (ASXL1) mutations have been described in all forms of myeloid neoplasms including chronic myelomonocytic leukemia (CMML) and associated with inferior outcomes, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) remains poorly understood. Transformation of CMML to secondary AML (sAML) is one of the leading causes of death in CMML patients. Previously, we observed that transcription factor RUNX1 mutations (RUNX1-MT) coexisted with ASXL1-MT in CMML and at myeloid blast phase of chronic myeloid leukemia. The contribution of RUNX1 mutations in the pathogenesis of myeloid transformation in ASXL1-mutated leukemia, however, remains unclear. Methods To evaluate the leukemogenic role of RUNX1-MT in ASXL1-mutated cells, we co-expressed RUNX1-MT (R135T) and ASXL1-MT (R693X) in different cell lines and performed immunoblot, co-immunoprecipitation, gene expression microarray, quantitative RT-PCR, cell proliferation, differentiation, and clonogenic assays for in vitro functional analyses. The in vivo effect was investigated using the C57BL/6 mouse bone marrow transplantation (BMT) model. Results Co-expression of two mutant genes increased myeloid stem cells in animal model, suggesting that cooperation of RUNX1 and ASXL1 mutations played a critical role in leukemia transformation. The expression of RUNX1 mutant in ASXL1-mutated myeloid cells augmented proliferation, blocked differentiation, and increased self-renewal activity. At 9 months post-BMT, mice harboring combined RUNX1 and ASXL1 mutations developed disease characterized by marked splenomegaly, hepatomegaly, and leukocytosis with a shorter latency. Mice transduced with both ASXL1 and RUNX1 mutations enhanced inhibitor of DNA binding 1 (ID1) expression in the spleen, liver, and bone marrow cells. Bone marrow samples from CMML showed that ID1 overexpressed in coexisted mutations of RUNX1 and ASXL1 compared to normal control and either RUNX1-MT or ASXL1-MT samples. Moreover, the RUNX1 mutant protein was more stable than WT and increased HIF1-α and its target ID1 gene expression in ASXL1 mutant cells. Conclusion The present study demonstrated the biological and functional evidence for the critical role of RUNX1-MT in ASXL1-mutated leukemia in the pathogenesis of myeloid malignancies.


1999 ◽  
Vol 19 (9) ◽  
pp. 6355-6366 ◽  
Author(s):  
Unnur Thorsteinsdottir ◽  
Jana Krosl ◽  
Evert Kroon ◽  
André Haman ◽  
Trang Hoang ◽  
...  

ABSTRACT A recurrent translocation between chromosome 1 (Pbx1) and 19 (E2A) leading to the expression of the E2A-Pbx1 fusion oncoprotein occurs in ∼5 to 10% of acute leukemias in humans. It has been proposed that some of the oncogenic potential of E2A-Pbx1 could be mediated through heterocomplex formation with Hox proteins, which are also involved in human and mouse leukemias. To directly test this possibility, mouse bone marrow cells were engineered by retroviral gene transfer to overexpress E2A-Pbx1a together withHoxa9. The results obtained demonstrated a strong synergistic interaction between E2A-Pbx1a andHoxa9 in inducing growth factor-independent proliferation of transduced bone marrow cells in vitro and leukemic growth in vivo in only 39 ± 2 days. The leukemic blasts which coexpressE2A-Pbx1a and Hoxa9 showed little differentiation and produced cytokines such as interleukin-3, granulocyte colony-stimulating factor, and Steel. Together, these studies demonstrate that the Hoxa9 and E2A-Pbx1a gene products collaborate to produce a highly aggressive acute leukemic disease.


Sign in / Sign up

Export Citation Format

Share Document