scholarly journals Nanocomposites for X-Ray Photodynamic Therapy

2020 ◽  
Vol 21 (11) ◽  
pp. 4004 ◽  
Author(s):  
Zaira Gadzhimagomedova ◽  
Peter Zolotukhin ◽  
Oleg Kit ◽  
Daria Kirsanova ◽  
Alexander Soldatov

Photodynamic therapy (PDT) has long been known as an effective method for treating surface cancer tissues. Although this technique is widely used in modern medicine, some novel approaches for deep lying tumors have to be developed. Recently, deeper penetration of X-rays into tissues has been implemented, which is now known as X-ray photodynamic therapy (XPDT). The two methods differ in the photon energy used, thus requiring the use of different types of scintillating nanoparticles. These nanoparticles are known to convert the incident energy into the activation energy of a photosensitizer, which leads to the generation of reactive oxygen species. Since not all photosensitizers are found to be suitable for the currently used scintillating nanoparticles, it is necessary to find the most effective biocompatible combination of these two agents. The most successful combinations of nanoparticles for XPDT are presented. Nanomaterials such as metal–organic frameworks having properties of photosensitizers and scintillation nanoparticles are reported to have been used as XPDT agents. The role of metal–organic frameworks for applying XPDT as well as the mechanism underlying the generation of reactive oxygen species are discussed.

2020 ◽  
Vol 8 (21) ◽  
pp. 4620-4626
Author(s):  
Shuiling Jin ◽  
Lanling Weng ◽  
Zhi Li ◽  
Zhenzhen Yang ◽  
Lili Zhu ◽  
...  

Chemodynamic therapy (CDT) has been critically challenged by insufficient H2O2 in cancer tissues and inefficient reactive oxygen species (ROS) production.


2019 ◽  
Vol 20 (9) ◽  
pp. 2072 ◽  
Author(s):  
Chun-Chen Yang ◽  
Min-Hsiung Tsai ◽  
Keng-Yuan Li ◽  
Chun-Han Hou ◽  
Feng-Huei Lin

Traditional photodynamic therapy (PDT) is limited by the penetration depth of visible light. Although the light source has been changed to near infrared, infrared light is unable to overcome the penetration barrier and it is only effective at the surface of the tumors. In this study, we used X-ray as a light source for deep-seated tumor treatment. A particle with a narrow band gap when exposed to soft X-rays would produce reactive oxygen species (ROS) to kill tumor cell, with less damage to the normal tissues. Anatase TiO2 has been studied as a photosensitizer in PDT. In the experiment, C was doped into the anatase lattice at an optimum atomic ratio to make the band gap narrower, which would be activated by X-ray to produce more ROS and kill tumor cells under stress. The results showed that the synthesized TiO2:C particles were identified as crystal structures of anatase. The synthesized particles could be activated effectively by soft X-rays to produce ROS, to degrade methylene blue by up to 30.4%. Once TiO2:C was activated by X-ray irradiation, the death rate of A549 cells in in vitro testing was as high as 16.57%, on day 2. In the animal study, the tumor size gradually decreased after treatment with TiO2:C and exposure to X-rays on day 0 and day 8. On day 14, the tumor declined to nearly half of its initial volume, while the tumor in the control group was twice its initial volume. After the animal was sacrificed, blood, and major organs were harvested for further analysis and examination, with data fully supporting the safety of the treatment. Based on the results of the study, we believe that TiO2:C when exposed to X-rays could overcome the limitation of penetration depth and could improve PDT effects by inhibiting tumor growth effectively and safely, in vivo.


2019 ◽  
Vol 20 (5) ◽  
pp. 1148 ◽  
Author(s):  
Chun-Chen Yang ◽  
Wei-Yun Wang ◽  
Feng-Huei Lin ◽  
Chun-Han Hou

Conventional photodynamic therapy (PDT) is limited by its penetration depth due to the photosensitizer and light source. In this study, we developed X-ray induced photodynamic therapy that applied X-ray as the light source to activate Ce-doped CaCO3 (CaCO3:Ce) to generate an intracellular reactive oxygen species (ROS) for killing cancer cells. The A549 cell line was used as the in vitro and in vivo model to evaluate the efficacy of X-ray-induced CaCO3:Ce. The cell viability significantly decreased and cell cytotoxicity obviously increased with CaCO3:Ce exposure under X-ray irradiation, which is less harmful than radiotherapy in tumor treatment. CaCO3:Ce produced significant ROS under X-ray irradiation and promoted A549 cancer cell death. CaCO3:Ce can enhance the efficacy of X-ray induced PDT, and tumor growth was inhibited in vivo. The blood analysis and hematoxylin and eosin stain (H&E) stain fully supported the safety of the treatment. The mechanisms underlying ROS and CO2 generation by CaCO3:Ce activated by X-ray irradiation to induce cell toxicity, thereby inhibiting tumor growth, is discussed. These findings and advances are of great importance in providing a novel therapeutic approach as an alternative tumor treatment.


2021 ◽  
Vol 2 (4) ◽  
pp. 041301
Author(s):  
Hudson A. Bicalho ◽  
Victor Quezada-Novoa ◽  
Ashlee J. Howarth

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3212
Author(s):  
Daria Kirsanova ◽  
Vladimir Polyakov ◽  
Vera Butova ◽  
Peter Zolotukhin ◽  
Anna Belanova ◽  
...  

It is known that the initiation of photodynamic therapy (PDT) in deep-seated tumors requires the use of X-rays to activate the reactive oxygen species generation in deep tissues. The aim of this paper is to synthesize X-ray nanophosphors and analyze their structural and luminescence characteristics to push the PDT process deep into the body. The article deals with BaGdF5:Eu3+, BaGdF5:Sm3+, and BaGdF5:Tb3+ nanophosphors synthesized using microwave synthesis. It is found that the nanoparticles are biocompatible and have sizes 5–17 nm. However, according to the analysis of X-ray excited optical luminescence, BaGdF5:Sm3+ nanophosphors will not be effective for treating deep-seated tumors. Thus, BaGdF5:Eu3+ and BaGdF5:Tb3+ nanoparticles meet the requirements for the subsequent production of nanocomposites based on them that can be used in X-ray photodynamic therapy.


2021 ◽  
Author(s):  
Kaplan Kirakci ◽  
Tatyana Pozmogova ◽  
Andrey Y Protasevich ◽  
Georgy D Vavilov ◽  
Dmitri Stass ◽  
...  

X-ray-induced photodynamic therapy (X-PDT) has recently evolved into a suitable modality to fight cancer. This technique, which exploits radiosensitizers producing reactive oxygen species, allows for a reduction of the radiation...


Sign in / Sign up

Export Citation Format

Share Document